MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 328
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 212 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 327 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 212 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 286 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  bibi12i  329  biluk  974  xorass  1468  hadbi  1537  hadnot  1541  sbrbis  2405  ssequn1  3783  symdifass  3853  asymref  5512  aceq1  8940  aceq0  8941  zfac  9282  zfcndac  9441  funcnvmptOLD  29467  hashreprin  30698  axacprim  31584  rp-fakeanorass  37858  rp-fakenanass  37860
  Copyright terms: Public domain W3C validator