| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version GIF version | ||
| Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bibi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bibi12i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | bibi2i 327 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜃)) |
| 3 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | bibi1i 328 | . 2 ⊢ ((𝜑 ↔ 𝜃) ↔ (𝜓 ↔ 𝜃)) |
| 5 | 2, 4 | bitri 264 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: pm5.32 668 orbidi 973 pm5.7 975 xorbi12i 1477 abbi 2737 brsymdif 4711 nfnid 4897 asymref 5512 isocnv2 6581 zfcndrep 9436 f1omvdco3 17869 brtxpsd 32001 bj-sbeq 32896 rp-fakeoranass 37859 rp-fakeinunass 37861 relexp0eq 37993 |
| Copyright terms: Public domain | W3C validator |