Proof of Theorem rp-fakenanass
| Step | Hyp | Ref
| Expression |
| 1 | | bicom1 211 |
. . . 4
⊢ ((𝜑 ↔ 𝜒) → (𝜒 ↔ 𝜑)) |
| 2 | | nanbi2 1456 |
. . . 4
⊢ ((𝜑 ↔ 𝜒) → ((𝜓 ⊼ 𝜑) ↔ (𝜓 ⊼ 𝜒))) |
| 3 | 1, 2 | nanbi12d 1463 |
. . 3
⊢ ((𝜑 ↔ 𝜒) → ((𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜒)))) |
| 4 | | nannan 1451 |
. . . . . 6
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
| 5 | | simpr 477 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝜒) → 𝜒) |
| 6 | 5 | imim2i 16 |
. . . . . 6
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜒)) |
| 7 | 4, 6 | sylbi 207 |
. . . . 5
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) → (𝜑 → 𝜒)) |
| 8 | | nannan 1451 |
. . . . . 6
⊢ ((𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ (𝜒 → (𝜓 ∧ 𝜑))) |
| 9 | | simpr 477 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝜑) → 𝜑) |
| 10 | 9 | imim2i 16 |
. . . . . 6
⊢ ((𝜒 → (𝜓 ∧ 𝜑)) → (𝜒 → 𝜑)) |
| 11 | 8, 10 | sylbi 207 |
. . . . 5
⊢ ((𝜒 ⊼ (𝜓 ⊼ 𝜑)) → (𝜒 → 𝜑)) |
| 12 | 7, 11 | impbid21d 201 |
. . . 4
⊢ ((𝜒 ⊼ (𝜓 ⊼ 𝜑)) → ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) → (𝜑 ↔ 𝜒))) |
| 13 | 8 | notbii 310 |
. . . . . . 7
⊢ (¬
(𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ ¬ (𝜒 → (𝜓 ∧ 𝜑))) |
| 14 | | pm4.61 442 |
. . . . . . 7
⊢ (¬
(𝜒 → (𝜓 ∧ 𝜑)) ↔ (𝜒 ∧ ¬ (𝜓 ∧ 𝜑))) |
| 15 | | ianor 509 |
. . . . . . . 8
⊢ (¬
(𝜓 ∧ 𝜑) ↔ (¬ 𝜓 ∨ ¬ 𝜑)) |
| 16 | 15 | anbi2i 730 |
. . . . . . 7
⊢ ((𝜒 ∧ ¬ (𝜓 ∧ 𝜑)) ↔ (𝜒 ∧ (¬ 𝜓 ∨ ¬ 𝜑))) |
| 17 | 13, 14, 16 | 3bitri 286 |
. . . . . 6
⊢ (¬
(𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ (𝜒 ∧ (¬ 𝜓 ∨ ¬ 𝜑))) |
| 18 | 4 | notbii 310 |
. . . . . . 7
⊢ (¬
(𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ ¬ (𝜑 → (𝜓 ∧ 𝜒))) |
| 19 | | pm4.61 442 |
. . . . . . 7
⊢ (¬
(𝜑 → (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ ¬ (𝜓 ∧ 𝜒))) |
| 20 | | ianor 509 |
. . . . . . . 8
⊢ (¬
(𝜓 ∧ 𝜒) ↔ (¬ 𝜓 ∨ ¬ 𝜒)) |
| 21 | 20 | anbi2i 730 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝜓 ∧ 𝜒)) ↔ (𝜑 ∧ (¬ 𝜓 ∨ ¬ 𝜒))) |
| 22 | 18, 19, 21 | 3bitri 286 |
. . . . . 6
⊢ (¬
(𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 ∧ (¬ 𝜓 ∨ ¬ 𝜒))) |
| 23 | | pm5.1 902 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜒) → (𝜑 ↔ 𝜒)) |
| 24 | 23 | ancoms 469 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝜑) → (𝜑 ↔ 𝜒)) |
| 25 | 24 | ad2ant2r 783 |
. . . . . 6
⊢ (((𝜒 ∧ (¬ 𝜓 ∨ ¬ 𝜑)) ∧ (𝜑 ∧ (¬ 𝜓 ∨ ¬ 𝜒))) → (𝜑 ↔ 𝜒)) |
| 26 | 17, 22, 25 | syl2anb 496 |
. . . . 5
⊢ ((¬
(𝜒 ⊼ (𝜓 ⊼ 𝜑)) ∧ ¬ (𝜑 ⊼ (𝜓 ⊼ 𝜒))) → (𝜑 ↔ 𝜒)) |
| 27 | 26 | ex 450 |
. . . 4
⊢ (¬
(𝜒 ⊼ (𝜓 ⊼ 𝜑)) → (¬ (𝜑 ⊼ (𝜓 ⊼ 𝜒)) → (𝜑 ↔ 𝜒))) |
| 28 | 12, 27 | bija 370 |
. . 3
⊢ (((𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜒))) → (𝜑 ↔ 𝜒)) |
| 29 | 3, 28 | impbii 199 |
. 2
⊢ ((𝜑 ↔ 𝜒) ↔ ((𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜒)))) |
| 30 | | nancom 1450 |
. . . . 5
⊢ ((𝜓 ⊼ 𝜑) ↔ (𝜑 ⊼ 𝜓)) |
| 31 | 30 | nanbi2i 1459 |
. . . 4
⊢ ((𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ (𝜒 ⊼ (𝜑 ⊼ 𝜓))) |
| 32 | | nancom 1450 |
. . . 4
⊢ ((𝜒 ⊼ (𝜑 ⊼ 𝜓)) ↔ ((𝜑 ⊼ 𝜓) ⊼ 𝜒)) |
| 33 | 31, 32 | bitri 264 |
. . 3
⊢ ((𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ ((𝜑 ⊼ 𝜓) ⊼ 𝜒)) |
| 34 | 33 | bibi1i 328 |
. 2
⊢ (((𝜒 ⊼ (𝜓 ⊼ 𝜑)) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜒))) ↔ (((𝜑 ⊼ 𝜓) ⊼ 𝜒) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜒)))) |
| 35 | 29, 34 | bitri 264 |
1
⊢ ((𝜑 ↔ 𝜒) ↔ (((𝜑 ⊼ 𝜓) ⊼ 𝜒) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜒)))) |