| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitru | Structured version Visualization version GIF version | ||
| Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| bitru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bitru | ⊢ (𝜑 ↔ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitru.1 | . 2 ⊢ 𝜑 | |
| 2 | tru 1487 | . 2 ⊢ ⊤ | |
| 3 | 1, 2 | 2th 254 | 1 ⊢ (𝜑 ↔ ⊤) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ⊤wtru 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-tru 1486 |
| This theorem is referenced by: truorfal 1511 falortru 1512 truimtru 1514 falimtru 1516 falimfal 1517 notfal 1519 trubitru 1520 falbifal 1523 0frgp 18192 tgcgr4 25426 astbstanbst 41076 atnaiana 41090 dandysum2p2e4 41165 |
| Copyright terms: Public domain | W3C validator |