Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.3t Structured version   Visualization version   GIF version

Theorem bj-19.3t 32689
Description: Closed form of 19.3 2069. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-19.3t ((𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑𝜑))

Proof of Theorem bj-19.3t
StepHypRef Expression
1 sp 2053 . 2 (∀𝑥𝜑𝜑)
2 id 22 . 2 ((𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑))
31, 2impbid2 216 1 ((𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator