Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.3t Structured version   Visualization version   Unicode version

Theorem bj-19.3t 32689
Description: Closed form of 19.3 2069. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-19.3t  |-  ( (
ph  ->  A. x ph )  ->  ( A. x ph  <->  ph ) )

Proof of Theorem bj-19.3t
StepHypRef Expression
1 sp 2053 . 2  |-  ( A. x ph  ->  ph )
2 id 22 . 2  |-  ( (
ph  ->  A. x ph )  ->  ( ph  ->  A. x ph ) )
31, 2impbid2 216 1  |-  ( (
ph  ->  A. x ph )  ->  ( A. x ph  <->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator