Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ab0 Structured version   Visualization version   GIF version

Theorem bj-ab0 32902
Description: The class of sets verifying a falsity is the empty set (closed form of abf 3978). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ab0 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)

Proof of Theorem bj-ab0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1839 . . 3 (∀𝑥 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑)
2 bj-stdpc4v 32754 . . . . 5 (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑)
3 sbn 2391 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
42, 3sylib 208 . . . 4 (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑)
5 df-clab 2609 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
64, 5sylnibr 319 . . 3 (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
71, 6alrimih 1751 . 2 (∀𝑥 ¬ 𝜑 → ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
8 eq0 3929 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
97, 8sylibr 224 1 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1481   = wceq 1483  [wsb 1880  wcel 1990  {cab 2608  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  bj-abf  32903  bj-csbprc  32904
  Copyright terms: Public domain W3C validator