![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ab0 | Structured version Visualization version GIF version |
Description: The class of sets verifying a falsity is the empty set (closed form of abf 3978). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ab0 | ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1839 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | bj-stdpc4v 32754 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑) | |
3 | sbn 2391 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | sylib 208 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) |
5 | df-clab 2609 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
6 | 4, 5 | sylnibr 319 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
7 | 1, 6 | alrimih 1751 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
8 | eq0 3929 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
9 | 7, 8 | sylibr 224 | 1 ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 = wceq 1483 [wsb 1880 ∈ wcel 1990 {cab 2608 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-nul 3916 |
This theorem is referenced by: bj-abf 32903 bj-csbprc 32904 |
Copyright terms: Public domain | W3C validator |