| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-clelsb3 | Structured version Visualization version GIF version | ||
| Description: Remove dependency on ax-ext 2602 (and df-cleq 2615) from clelsb3 2729. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-clelsb3 | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 | . . 3 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 | |
| 2 | 1 | sbco2 2415 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ [𝑥 / 𝑧]𝑧 ∈ 𝐴) |
| 3 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐴 | |
| 4 | eleq1w 2684 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 5 | 3, 4 | sbie 2408 | . . 3 ⊢ ([𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 6 | 5 | sbbii 1887 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝐴) |
| 7 | nfv 1843 | . . 3 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 | |
| 8 | eleq1w 2684 | . . 3 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 9 | 7, 8 | sbie 2408 | . 2 ⊢ ([𝑥 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 2, 6, 9 | 3bitr3i 290 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 [wsb 1880 ∈ wcel 1990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clel 2618 |
| This theorem is referenced by: bj-hblem 32849 |
| Copyright terms: Public domain | W3C validator |