MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb3 Structured version   Visualization version   GIF version

Theorem clelsb3 2729
Description: Substitution applied to an atomic wff (class version of elsb3 2434). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb3 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem clelsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . 3 𝑦 𝑤𝐴
21sbco2 2415 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑤]𝑤𝐴)
3 nfv 1843 . . . 4 𝑤 𝑦𝐴
4 eleq1 2689 . . . 4 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
53, 4sbie 2408 . . 3 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
65sbbii 1887 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑦]𝑦𝐴)
7 nfv 1843 . . 3 𝑤 𝑥𝐴
8 eleq1 2689 . . 3 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
97, 8sbie 2408 . 2 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
102, 6, 93bitr3i 290 1 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsb 1880  wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618
This theorem is referenced by:  hblem  2731  cbvreu  3169  sbcel1v  3495  rmo3  3528  kmlem15  8986  iuninc  29379  measiuns  30280  ballotlemodife  30559  bj-nfcf  32920  sbcel1gvOLD  39094  ellimcabssub0  39849
  Copyright terms: Public domain W3C validator