| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelsb3 | Structured version Visualization version GIF version | ||
| Description: Substitution applied to an atomic wff (class version of elsb3 2434). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb3 | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 | . . 3 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 | |
| 2 | 1 | sbco2 2415 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝐴) |
| 3 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
| 4 | eleq1 2689 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 5 | 3, 4 | sbie 2408 | . . 3 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 6 | 5 | sbbii 1887 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝐴) |
| 7 | nfv 1843 | . . 3 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
| 8 | eleq1 2689 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 9 | 7, 8 | sbie 2408 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 10 | 2, 6, 9 | 3bitr3i 290 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 [wsb 1880 ∈ wcel 1990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 |
| This theorem is referenced by: hblem 2731 cbvreu 3169 sbcel1v 3495 rmo3 3528 kmlem15 8986 iuninc 29379 measiuns 30280 ballotlemodife 30559 bj-nfcf 32920 sbcel1gvOLD 39094 ellimcabssub0 39849 |
| Copyright terms: Public domain | W3C validator |