Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfifc2 Structured version   Visualization version   GIF version

Theorem bj-dfifc2 32564
Description: This should be the alternate definition of "ifc" if "if-" enters the main part. (Contributed by BJ, 20-Sep-2019.)
Assertion
Ref Expression
bj-dfifc2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑𝑥𝐴) ∨ (¬ 𝜑𝑥𝐵))}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bj-dfifc2
StepHypRef Expression
1 df-if 4087 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
2 ancom 466 . . . . 5 ((𝜑𝑥𝐴) ↔ (𝑥𝐴𝜑))
3 ancom 466 . . . . 5 ((¬ 𝜑𝑥𝐵) ↔ (𝑥𝐵 ∧ ¬ 𝜑))
42, 3orbi12i 543 . . . 4 (((𝜑𝑥𝐴) ∨ (¬ 𝜑𝑥𝐵)) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑)))
54bicomi 214 . . 3 (((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑)) ↔ ((𝜑𝑥𝐴) ∨ (¬ 𝜑𝑥𝐵)))
65abbii 2739 . 2 {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝜑𝑥𝐴) ∨ (¬ 𝜑𝑥𝐵))}
71, 6eqtri 2644 1 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑𝑥𝐴) ∨ (¬ 𝜑𝑥𝐵))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1483  wcel 1990  {cab 2608  ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  bj-df-ifc  32565
  Copyright terms: Public domain W3C validator