![]() |
Metamath
Proof Explorer Theorem List (p. 326 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | unbdqndv2lem2 32501* | Lemma for unbdqndv2 32502. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ 𝑊 = if((𝐵 · (𝑉 − 𝑈)) ≤ (abs‘((𝐹‘𝑈) − (𝐹‘𝐴))), 𝑈, 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝑉) & ⊢ (𝜑 → (𝑉 − 𝑈) < 𝐷) & ⊢ (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹‘𝑉) − (𝐹‘𝑈))) / (𝑉 − 𝑈))) ⇒ ⊢ (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊 − 𝐴)) < 𝐷 ∧ 𝐵 ≤ (abs‘(𝐺‘𝑊))))) | ||
Theorem | unbdqndv2 32502* | Variant of unbdqndv1 32499 with the hypothesis that (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) is unbounded where 𝑥 ≤ 𝐴 and 𝐴 ≤ 𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹)) | ||
Theorem | knoppndvlem1 32503 | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) | ||
Theorem | knoppndvlem2 32504 | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 < 𝐼) ⇒ ⊢ (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ) | ||
Theorem | knoppndvlem3 32505 | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) | ||
Theorem | knoppndvlem4 32506* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) | ||
Theorem | knoppndvlem5 32507* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) ∈ ℝ) | ||
Theorem | knoppndvlem6 32508* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) | ||
Theorem | knoppndvlem7 32509* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) | ||
Theorem | knoppndvlem8 32510* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) | ||
Theorem | knoppndvlem9 32511* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) / 2)) | ||
Theorem | knoppndvlem10 32512* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2)) | ||
Theorem | knoppndvlem11 32513* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((abs‘(𝐵 − 𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖))) | ||
Theorem | knoppndvlem12 32514 | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) | ||
Theorem | knoppndvlem13 32515 | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → 𝐶 ≠ 0) | ||
Theorem | knoppndvlem14 32516* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 7-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) | ||
Theorem | knoppndvlem15 32517* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 6-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊‘𝐵) − (𝑊‘𝐴)))) | ||
Theorem | knoppndvlem16 32518 | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 19-Jul-2021.) |
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) | ||
Theorem | knoppndvlem17 32519* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 12-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘𝐵) − (𝑊‘𝐴))) / (𝐵 − 𝐴))) | ||
Theorem | knoppndvlem18 32520* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 14-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))) | ||
Theorem | knoppndvlem19 32521* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 17-Aug-2021.) |
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℤ (𝐴 ≤ 𝐻 ∧ 𝐻 ≤ 𝐵)) | ||
Theorem | knoppndvlem20 32522 | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) | ||
Theorem | knoppndvlem21 32523* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) & ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷) & ⊢ (𝜑 → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
Theorem | knoppndvlem22 32524* | Lemma for knoppndv 32525. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
Theorem | knoppndv 32525* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) | ||
Theorem | knoppf 32526* | Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) | ||
Theorem | knoppcn2 32527* | Variant of knoppcn 32494 with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℝ)) | ||
Theorem | cnndvlem1 32528* | Lemma for cnndv 32530. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) | ||
Theorem | cnndvlem2 32529* | Lemma for cnndv 32530. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
Theorem | cnndv 32530 | There exists a continuous nowhere differentiable function. The result follows directly from knoppcn 32494 and knoppndv 32525. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
In this mathbox, we try to respect the ordering of the sections of the main part. There are strengthenings of theorems of the main part, as well as work on reducing axiom dependencies. | ||
Miscellaneous utility theorems of propositional calculus. | ||
In this section, we prove a few rules of inference derived from modus ponens ax-mp 5, and which do not depend on any other axioms. | ||
Theorem | bj-mp2c 32531 | A double modus ponens inference. Inference associated with mpd 15. (Contributed by BJ, 24-Sep-2019.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ 𝜒 | ||
Theorem | bj-mp2d 32532 | A double modus ponens inference. Inference associated with mpcom 38. (Contributed by BJ, 24-Sep-2019.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) ⇒ ⊢ 𝜒 | ||
In this section, we prove a syntactic theorem (bj-0 32533) asserting that some formula is well-formed. Then, we use this syntactic theorem to shorten the proof of a "usual" theorem (bj-1 32534) and explain in the comment of that theorem why this phenomenon is unusual. | ||
Theorem | bj-0 32533 | A syntactic theorem. See the section comment and the comment of bj-1 32534. The full proof (that is, with the syntactic, non-essential steps) does not appear on this webpage. It has five steps and reads $= wph wps wi wch wi $. The only other syntactic theorems in the main part of set.mm are wel 1991 and weq 1874. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
wff ((𝜑 → 𝜓) → 𝜒) | ||
Theorem | bj-1 32534 |
In this proof, the use of the syntactic theorem bj-0 32533
allows to reduce
the total length by one (non-essential) step. See also the section
comment and the comment of bj-0 32533. Since bj-0 32533
is used in a
non-essential step, this use does not appear on this webpage (but the
present theorem appears on the webpage for bj-0 32533
as a theorem referencing
it). The full proof reads $= wph wps wch bj-0 id $. (while, without
using bj-0 32533, it would read $= wph wps wi wch wi id $.).
Now we explain why syntactic theorems are not useful in set.mm. Suppose that the syntactic theorem thm-0 proves that PHI is a well-formed formula, and that thm-0 is used to shorten the proof of thm-1. Assume that PHI does have proper non-atomic subformulas (which is not the case of the formula proved by weq 1874 or wel 1991). Then, the proof of thm-1 does not construct all the proper non-atomic subformulas of PHI (if it did, then using thm-0 would not shorten it). Therefore, thm-1 is a special instance of a more general theorem with essentially the same proof. In the present case, bj-1 32534 is a special instance of id 22. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜓) → 𝜒)) | ||
Theorem | bj-a1k 32535 | Weakening of ax-1 6. This shortens the proofs of dfwe2 6981 (937>925), ordunisuc2 7044 (789>777), r111 8638 (558>545), smo11 7461 (1176>1164). (Contributed by BJ, 11-Aug-2020.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
Theorem | bj-jarri 32536 | Inference associated with jarr 106. Its associated inference is bj-jarrii 32537. (Contributed by BJ, 29-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜒) ⇒ ⊢ (𝜓 → 𝜒) | ||
Theorem | bj-jarrii 32537 | Inference associated with bj-jarri 32536. (Contributed by BJ, 29-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜒) & ⊢ 𝜓 ⇒ ⊢ 𝜒 | ||
Theorem | bj-imim2ALT 32538 | More direct proof of imim2 58. Note that imim2i 16 and imim2d 57 can be proved as usual from this closed form (i.e., using ax-mp 5 and syl 17 respectively). (Contributed by BJ, 19-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
Theorem | bj-imim21 32539 | The propositional function (𝜒 → (. → 𝜃)) is decreasing. (Contributed by BJ, 19-Jul-2019.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜓 → 𝜃)) → (𝜒 → (𝜑 → 𝜃)))) | ||
Theorem | bj-imim21i 32540 | Inference associated with bj-imim21 32539. Its associated inference is syl5 34. (Contributed by BJ, 19-Jul-2019.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 → (𝜓 → 𝜃)) → (𝜒 → (𝜑 → 𝜃))) | ||
Theorem | bj-orim2 32541 | Proof of orim2 886 from the axiomatic definition of disjunction (olc 399, orc 400, jao 534) and minimal implicational calculus. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓))) | ||
Theorem | bj-curry 32542 | A non-intuitionistic positive statement, sometimes called a paradox of material implication. Sometimes called Curry's axiom. (Contributed by BJ, 4-Apr-2021.) |
⊢ (𝜑 ∨ (𝜑 → 𝜓)) | ||
Theorem | bj-peirce 32543 | Proof of peirce 193 from minimal implicational calculus, the axiomatic definition of disjunction (olc 399, orc 400, jao 534), and Curry's axiom bj-curry 32542. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | ||
Theorem | bj-currypeirce 32544 | Curry's axiom (a non-intuitionistic statement sometimes called a paradox of material implication) implies Peirce's axiom peirce 193 over minimal implicational calculus and the axiomatic definition of disjunction (olc 399, orc 400, jao 534). A shorter proof from bj-orim2 32541, pm1.2 535, syl6com 37 is possible if we accept to use pm1.2 535, itself a direct consequence of jao 534. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∨ (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) | ||
Theorem | bj-peircecurry 32545 | Peirce's axiom peirce 193 implies Curry's axiom over minimal implicational calculus and the axiomatic definition of disjunction (olc 399, orc 400, jao 534). See comment of bj-currypeirce 32544. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ∨ (𝜑 → 𝜓)) | ||
Theorem | pm4.81ALT 32546 | Alternate proof of pm4.81 381. (Contributed by BJ, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) ↔ 𝜑) | ||
Theorem | bj-con4iALT 32547 | Alternate proof of con4i 113. Probably the original proof. (Contributed by BJ, 29-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜓 → 𝜑) | ||
Theorem | bj-con2com 32548 | A commuted form of the contrapositive, true in minimal calculus. (Contributed by BJ, 19-Mar-2020.) |
⊢ (𝜑 → ((𝜓 → ¬ 𝜑) → ¬ 𝜓)) | ||
Theorem | bj-con2comi 32549 | Inference associated with bj-con2com 32548. Its associated inference is mt2 191. TODO: when in the main part, add to mt2 191 that it is the inference associated with bj-con2comi 32549. (Contributed by BJ, 19-Mar-2020.) |
⊢ 𝜑 ⇒ ⊢ ((𝜓 → ¬ 𝜑) → ¬ 𝜓) | ||
Theorem | bj-pm2.01i 32550 | Inference associated with pm2.01 180. (Contributed by BJ, 30-Mar-2020.) |
⊢ (𝜑 → ¬ 𝜑) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | bj-nimn 32551 | If a formula is true, then it does not imply its negation. (Contributed by BJ, 19-Mar-2020.) A shorter proof is possible using id 22 and jc 159, however, the present proof uses theorems that are more basic than jc 159. (Proof modification is discouraged.) |
⊢ (𝜑 → ¬ (𝜑 → ¬ 𝜑)) | ||
Theorem | bj-nimni 32552 | Inference associated with bj-nimn 32551. (Contributed by BJ, 19-Mar-2020.) |
⊢ 𝜑 ⇒ ⊢ ¬ (𝜑 → ¬ 𝜑) | ||
Theorem | bj-peircei 32553 | Inference associated with peirce 193. (Contributed by BJ, 30-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | bj-looinvi 32554 | Inference associated with looinv 194. Its associated inference is bj-looinvii 32555. (Contributed by BJ, 30-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜓) ⇒ ⊢ ((𝜓 → 𝜑) → 𝜑) | ||
Theorem | bj-looinvii 32555 | Inference associated with bj-looinvi 32554. (Contributed by BJ, 30-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
A few lemmas about disjunction. The fundamental theorems in this family are the dual statements pm4.71 662 and pm4.72 920. See also biort 938 and biorf 420. | ||
Theorem | bj-jaoi1 32556 | Shortens orfa2 33887 (58>53), pm1.2 535 (20>18), pm1.2 535 (20>18), pm2.4 599 (31>25), pm2.41 597 (31>25), pm2.42 598 (38>32), pm3.2ni 899 (43>39), pm4.44 601 (55>51). (Contributed by BJ, 30-Sep-2019.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜓) → 𝜓) | ||
Theorem | bj-jaoi2 32557 | Shortens consensus 999 (110>106), elnn0z 11390 (336>329), pm1.2 535 (20>19), pm3.2ni 899 (43>39), pm4.44 601 (55>51). (Contributed by BJ, 30-Sep-2019.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 ∨ 𝜑) → 𝜓) | ||
A few other characterizations of the bicondional. The inter-definability of logical connectives offers many ways to express a given statement. Some useful theorems in this regard are df-or 385, df-an 386, pm4.64 387, imor 428, pm4.62 435 through pm4.67 444, and, for the De Morgan laws, ianor 509 through pm4.57 518. | ||
Theorem | bj-dfbi4 32558 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | ||
Theorem | bj-dfbi5 32559 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) | ||
Theorem | bj-dfbi6 32560 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) | ||
Theorem | bj-bijust0 32561 | The general statement that bijust 195 proves (with a shorter proof). (Contributed by NM, 11-May-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Revised by BJ, 19-Mar-2020.) |
⊢ ¬ ((𝜑 → 𝜑) → ¬ (𝜑 → 𝜑)) | ||
Theorem | bj-consensus 32562 | Version of consensus 999 expressed using the conditional operator. (Remark: it may be better to express it as consensus 999, using only binary connectives, and hinting at the fact that it is a Boolean algebra identity, like the absorption identities.) (Contributed by BJ, 30-Sep-2019.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | bj-consensusALT 32563 | Alternate proof of bj-consensus 32562. (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | bj-dfifc2 32564* | This should be the alternate definition of "ifc" if "if-" enters the main part. (Contributed by BJ, 20-Sep-2019.) |
⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} | ||
Theorem | bj-df-ifc 32565* | The definition of "ifc" if "if-" enters the main part. This is in line with the definition of a class as the extension of a predicate in df-clab 2609. (Contributed by BJ, 20-Sep-2019.) |
⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} | ||
Theorem | bj-ififc 32566* | A theorem linking if- and if. (Contributed by BJ, 24-Sep-2019.) |
⊢ (𝑥 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)) | ||
Miscellaneous theorems of propositional calculus. | ||
Theorem | bj-imbi12 32567 | Uncurried (imported) form of imbi12 336. (Contributed by BJ, 6-May-2019.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
Theorem | bj-biorfi 32568 | This should be labeled "biorfi" while the current biorfi 422 should be labeled "biorfri". The dual of biorf 420 is not biantr 972 but iba 524 (and ibar 525). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ ¬ 𝜑 ⇒ ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) | ||
Theorem | bj-falor 32569 | Dual of truan 1501 (which has biconditional reversed). (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 ↔ (⊥ ∨ 𝜑)) | ||
Theorem | bj-falor2 32570 | Dual of truan 1501. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) | ||
Theorem | bj-bibibi 32571 | A property of the biconditional. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ↔ (𝜑 ↔ 𝜓))) | ||
Theorem | bj-imn3ani 32572 | Duplication of bnj1224 30872. Three-fold version of imnani 439. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 22-Oct-2019.) (Proof modification is discouraged.) |
⊢ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | ||
Theorem | bj-andnotim 32573 | Two ways of expressing a certain ternary connective. Note the respective positions of the three formulas on each side of the biconditional. (Contributed by BJ, 6-Oct-2018.) |
⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) ∨ 𝜒)) | ||
Theorem | bj-bi3ant 32574 | This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013.) (Revised by BJ, 14-Jun-2019.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) | ||
Theorem | bj-bisym 32575 | This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013.) (Revised by BJ, 14-Jun-2019.) |
⊢ (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → (((𝜓 → 𝜑) → (𝜃 → 𝜒)) → ((𝜑 ↔ 𝜓) → (𝜒 ↔ 𝜃)))) | ||
In this section, we prove some theorems related to modal logic. For modal logic, we refer to https://en.wikipedia.org/wiki/Kripke_semantics, https://en.wikipedia.org/wiki/Modal_logic and https://plato.stanford.edu/entries/logic-modal/. Monadic first-order logic (i.e., with quantification over only one variable) is bi-interpretable with modal logic, by mapping ∀𝑥 to "necessity" (generally denoted by a box) and ∃𝑥 to "possibility" (generally denoted by a diamond). Therefore, we use these quantifiers so as not to introduce new symbols. (To be strictly within modal logic, we should add dv conditions between 𝑥 and any other metavariables appearing in the statements.) For instance, ax-gen 1722 corresponds to the necessitation rule of modal logic, and ax-4 1737 corresponds to the distributivity axiom (K) of modal logic, also called the Kripke scheme. Modal logics satisfying these rule and axiom are called "normal modal logics", of which the most important modal logics are. The minimal normal modal logic is also denoted by (K). Here are a few normal modal logics with their axiomatizations (on top of (K)): (K) axiomatized by no supplementary axioms; (T) axiomatized by the axiom T; (K4) axiomatized by the axiom 4; (S4) axiomatized by the axioms T,4; (S5) axiomatized by the axioms T,5 or D,B,4; (GL) axiomatized by the axiom GL. The last one, called Gödel–Löb logic or provability logic, is important because it describes exactly the properties of provability in Peano arithmetic, as proved by Robert Solovay. See for instance https://plato.stanford.edu/entries/logic-provability/. A basic result in this logic is bj-gl4 32580. | ||
Theorem | bj-axdd2 32576 | This implication, proved using only ax-gen 1722 and ax-4 1737 on top of propositional calculus (hence holding, up to the standard interpretation, in any normal modal logic), shows that the axiom scheme ⊢ ∃𝑥⊤ implies the axiom scheme ⊢ (∀𝑥𝜑 → ∃𝑥𝜑). These correspond to the modal axiom (D), and in predicate calculus, they assert that the universe of discourse is nonempty. For the converse, see bj-axd2d 32577. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜓)) | ||
Theorem | bj-axd2d 32577 | This implication, proved using only ax-gen 1722 on top of propositional calculus (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme ⊢ (∀𝑥𝜑 → ∃𝑥𝜑) implies the axiom scheme ⊢ ∃𝑥⊤. These correspond to the modal axiom (D), and in predicate calculus, they assert that the universe of discourse is nonempty. For the converse, see bj-axdd2 32576. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∀𝑥⊤ → ∃𝑥⊤) → ∃𝑥⊤) | ||
Theorem | bj-axtd 32578 | This implication, proved from propositional calculus only (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme ⊢ (∀𝑥𝜑 → 𝜑) (modal T) implies the axiom scheme ⊢ (∀𝑥𝜑 → ∃𝑥𝜑) (modal D). See also bj-axdd2 32576 and bj-axd2d 32577. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∀𝑥 ¬ 𝜑 → ¬ 𝜑) → ((∀𝑥𝜑 → 𝜑) → (∀𝑥𝜑 → ∃𝑥𝜑))) | ||
Theorem | bj-gl4lem 32579 | Lemma for bj-gl4 32580. Note that this proof holds in the modal logic (K). (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → ∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑))) | ||
Theorem | bj-gl4 32580 | In a normal modal logic, the modal axiom GL implies the modal axiom (4). Note that the antecedent of bj-gl4 32580 is an instance of the axiom GL, with 𝜑 replaced by (∀𝑥𝜑 ∧ 𝜑), sometimes called the "strong necessity" of 𝜑. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑)) → ∀𝑥(∀𝑥𝜑 ∧ 𝜑)) → (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑)) | ||
Theorem | bj-axc4 32581 | Over minimal calculus, the modal axiom (4) (hba1 2151) and the modal axiom (K) (ax-4 1737) together imply axc4 2130. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) → ((∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) → (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)))) | ||
In this section, we assume that, on top of propositional calculus, there is given a provability predicate Prv satisfying the three axioms ax-prv1 32583 and ax-prv2 32584 and ax-prv3 32585. Note the similarity with ax-gen 1722, ax-4 1737 and hba1 2151 respectively. These three properties of Prv are often called the Hilbert–Bernays–Löb derivability conditions, or the Hilbert–Bernays provability conditions. This corresponds to the modal logic (K4) (see previous section for modal logic). The interpretation of provability logic is the following: we are given a background first-order theory T, the wff Prv 𝜑 means "𝜑 is provable in T", and the turnstile ⊢ indicates provability in T. Beware that "provability logic" often means (K) augmented with the Gödel–Löb axiom GL, which we do not assume here (at least for the moment). See for instance https://plato.stanford.edu/entries/logic-provability/. Provability logic is worth studying because whenever T is a first-order theory containing Robinson arithmetic (a fragment of Peano arithmetic), one can prove (using Gödel numbering, and in the much weaker primitive recursive arithmetic) that there exists in T a provability predicate Prv satisfying the above three axioms. (We do not construct this predicate in this section; this is still a project.) The main theorems of this section are the "easy parts" of the proofs of Gödel's second incompleteness theorem (bj-babygodel 32588) and Löb's theorem (bj-babylob 32589). See the comments of these theorems for details. | ||
Syntax | cprvb 32582 | Syntax for the provability predicate. |
wff Prv 𝜑 | ||
Axiom | ax-prv1 32583 | First property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
⊢ 𝜑 ⇒ ⊢ Prv 𝜑 | ||
Axiom | ax-prv2 32584 | Second property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
⊢ (Prv (𝜑 → 𝜓) → (Prv 𝜑 → Prv 𝜓)) | ||
Axiom | ax-prv3 32585 | Third property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
⊢ (Prv 𝜑 → Prv Prv 𝜑) | ||
Theorem | prvlem1 32586 | An elementary property of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (Prv 𝜑 → Prv 𝜓) | ||
Theorem | prvlem2 32587 | An elementary property of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (Prv 𝜑 → (Prv 𝜓 → Prv 𝜒)) | ||
Theorem | bj-babygodel 32588 |
See the section header comments for the context.
The first hypothesis reads "𝜑 is true if and only if it is not provable in T" (and having this first hypothesis means that we can prove this fact in T). The wff 𝜑 is a formal version of the sentence "This sentence is not provable". The hard part of the proof of Gödel's theorem is to construct such a 𝜑, called a "Gödel–Rosser sentence", for a first-order theory T which is effectively axiomatizable and contains Robinson arithmetic, through Gödel diagonalization (this can be done in primitive recursive arithmetic). The second hypothesis means that ⊥ is not provable in T, that is, that the theory T is consistent (and having this second hypothesis means that we can prove in T that the theory T is consistent). The conclusion is the falsity, so having the conclusion means that T can prove the falsity, that is, T is inconsistent. Therefore, taking the contrapositive, this theorem expresses that if a first-order theory is consistent (and one can prove in it that some formula is true if and only if it is not provable in it), then this theory does not prove its own consistency. This proof is due to George Boolos, Gödel's Second Incompleteness Theorem Explained in Words of One Syllable, Mind, New Series, Vol. 103, No. 409 (January 1994), pp. 1--3. (Contributed by BJ, 3-Apr-2019.) |
⊢ (𝜑 ↔ ¬ Prv 𝜑) & ⊢ ¬ Prv ⊥ ⇒ ⊢ ⊥ | ||
Theorem | bj-babylob 32589 |
See the section header comments for the context, as well as the comments
for bj-babygodel 32588.
Löb's theorem when the Löb sentence is given as a hypothesis (the hard part of the proof of Löb's theorem is to construct this Löb sentence; this can be done, using Gödel diagonalization, for any first-order effectively axiomatizable theory containing Robinson arithmetic). More precisely, the present theorem states that if a first-order theory proves that the provability of a given sentence entails its truth (and if one can construct in this theory a provability predicate and a Löb sentence, given here as the first hypothesis), then the theory actually proves that sentence. See for instance, Eliezer Yudkowsky, The Cartoon Guide to Löb's Theorem (available at http://yudkowsky.net/rational/lobs-theorem/). (Contributed by BJ, 20-Apr-2019.) |
⊢ (𝜓 ↔ (Prv 𝜓 → 𝜑)) & ⊢ (Prv 𝜑 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | bj-godellob 32590 | Proof of Gödel's theorem from Löb's theorem (see comments at bj-babygodel 32588 and bj-babylob 32589 for details). (Contributed by BJ, 20-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ¬ Prv 𝜑) & ⊢ ¬ Prv ⊥ ⇒ ⊢ ⊥ | ||
Utility lemmas or strengthenings of theorems in the main part (biconditional or closed forms, or fewer dv conditions, or dv conditions replaced with non-freeness hypotheses...). Sorted in the same order as in the main part. | ||
Theorem | bj-genr 32591 | Generalization rule on the right conjunct. See 19.28 2096. (Contributed by BJ, 7-Jul-2021.) |
⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜑 ∧ ∀𝑥𝜓) | ||
Theorem | bj-genl 32592 | Generalization rule on the left conjunct. See 19.27 2095. (Contributed by BJ, 7-Jul-2021.) |
⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (∀𝑥𝜑 ∧ 𝜓) | ||
Theorem | bj-genan 32593 | Generalization rule on a conjunction. Forward inference associated with 19.26 1798. (Contributed by BJ, 7-Jul-2021.) |
⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (∀𝑥𝜑 ∧ ∀𝑥𝜓) | ||
Theorem | bj-2alim 32594 | Closed form of 2alimi 1740. (Contributed by BJ, 6-May-2019.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | bj-2exim 32595 | Closed form of 2eximi 1763. (Contributed by BJ, 6-May-2019.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓)) | ||
Theorem | bj-alanim 32596 | Closed form of alanimi 1744. (Contributed by BJ, 6-May-2019.) |
⊢ (∀𝑥((𝜑 ∧ 𝜓) → 𝜒) → ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)) | ||
Theorem | bj-2albi 32597 | Closed form of 2albii 1748. (Contributed by BJ, 6-May-2019.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) | ||
Theorem | bj-notalbii 32598 | Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 3951 (103>94), ballotlem2 30550 (2655>2648), bnj1143 30861 (522>519), hausdiag 21448 (2119>2104). (Contributed by BJ, 17-Jul-2021.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓) | ||
Theorem | bj-2exbi 32599 | Closed form of 2exbii 1775. (Contributed by BJ, 6-May-2019.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓)) | ||
Theorem | bj-3exbi 32600 | Closed form of 3exbii 1776. (Contributed by BJ, 6-May-2019.) |
⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |