Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvdemo2 Structured version   Visualization version   GIF version

Theorem bj-dvdemo2 32803
Description: Remove dependency on ax-13 2246 from dvdemo2 4903 (this removal is noteworthy since dvdemo1 4902 and dvdemo2 4903 illustrate the phenomenon of bundling). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-dvdemo2 𝑥(𝑥 = 𝑦𝑧𝑥)
Distinct variable group:   𝑥,𝑧

Proof of Theorem bj-dvdemo2
StepHypRef Expression
1 bj-el 32796 . 2 𝑥 𝑧𝑥
2 ax-1 6 . 2 (𝑧𝑥 → (𝑥 = 𝑦𝑧𝑥))
31, 2eximii 1764 1 𝑥(𝑥 = 𝑦𝑧𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator