| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsexval | Structured version Visualization version GIF version | ||
| Description: Special case of equsexv 2109 proved from Tarski, ax-10 2019 (modal5) and hba1 2151 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-equsexval.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| bj-equsexval | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-equsexval.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) | |
| 2 | 1 | pm5.32i 669 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ ∀𝑥𝜓)) |
| 3 | 2 | exbii 1774 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓)) |
| 4 | ax6ev 1890 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 5 | bj-19.41al 32637 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜓)) | |
| 6 | 4, 5 | mpbiran 953 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓) ↔ ∀𝑥𝜓) |
| 7 | 3, 6 | bitri 264 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |