| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-gl4lem | Structured version Visualization version GIF version | ||
| Description: Lemma for bj-gl4 32580. Note that this proof holds in the modal logic (K). (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-gl4lem | ⊢ (∀𝑥𝜑 → ∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1798 | . . 3 ⊢ (∀𝑥(∀𝑥𝜑 ∧ 𝜑) ↔ (∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑)) | |
| 2 | simpr 477 | . . . . 5 ⊢ ((∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑) → ∀𝑥𝜑) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → ((∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑) → ∀𝑥𝜑)) |
| 4 | 3 | anc2ri 581 | . . 3 ⊢ (𝜑 → ((∀𝑥∀𝑥𝜑 ∧ ∀𝑥𝜑) → (∀𝑥𝜑 ∧ 𝜑))) |
| 5 | 1, 4 | syl5bi 232 | . 2 ⊢ (𝜑 → (∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑))) |
| 6 | 5 | alimi 1739 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: bj-gl4 32580 |
| Copyright terms: Public domain | W3C validator |