Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gl4 Structured version   Visualization version   GIF version

Theorem bj-gl4 32580
Description: In a normal modal logic, the modal axiom GL implies the modal axiom (4). Note that the antecedent of bj-gl4 32580 is an instance of the axiom GL, with 𝜑 replaced by (∀𝑥𝜑𝜑), sometimes called the "strong necessity" of 𝜑. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-gl4 ((∀𝑥(∀𝑥(∀𝑥𝜑𝜑) → (∀𝑥𝜑𝜑)) → ∀𝑥(∀𝑥𝜑𝜑)) → (∀𝑥𝜑 → ∀𝑥𝑥𝜑))

Proof of Theorem bj-gl4
StepHypRef Expression
1 bj-gl4lem 32579 . . 3 (∀𝑥𝜑 → ∀𝑥(∀𝑥(∀𝑥𝜑𝜑) → (∀𝑥𝜑𝜑)))
2 19.26 1798 . . . 4 (∀𝑥(∀𝑥𝜑𝜑) ↔ (∀𝑥𝑥𝜑 ∧ ∀𝑥𝜑))
32biimpi 206 . . 3 (∀𝑥(∀𝑥𝜑𝜑) → (∀𝑥𝑥𝜑 ∧ ∀𝑥𝜑))
41, 3imim12i 62 . 2 ((∀𝑥(∀𝑥(∀𝑥𝜑𝜑) → (∀𝑥𝜑𝜑)) → ∀𝑥(∀𝑥𝜑𝜑)) → (∀𝑥𝜑 → (∀𝑥𝑥𝜑 ∧ ∀𝑥𝜑)))
5 simpl 473 . 2 ((∀𝑥𝑥𝜑 ∧ ∀𝑥𝜑) → ∀𝑥𝑥𝜑)
64, 5syl6 35 1 ((∀𝑥(∀𝑥(∀𝑥𝜑𝜑) → (∀𝑥𝜑𝜑)) → ∀𝑥(∀𝑥𝜑𝜑)) → (∀𝑥𝜑 → ∀𝑥𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator