| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfcf | Structured version Visualization version GIF version | ||
| Description: Version of df-nfc 2753 with a dv condition replaced with a non-freeness hypothesis. (Contributed by BJ, 2-May-2019.) |
| Ref | Expression |
|---|---|
| bj-nfcf.nf | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| bj-nfcf | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2753 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
| 2 | bj-nfcf.nf | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 3 | 2 | nfcri 2758 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 |
| 4 | 3 | nfnf 2158 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 5 | 4 | sb8 2424 | . . 3 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴) |
| 6 | bj-sbnf 32828 | . . . . 5 ⊢ ([𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥[𝑦 / 𝑧]𝑧 ∈ 𝐴) | |
| 7 | clelsb3 2729 | . . . . . 6 ⊢ ([𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 8 | 7 | nfbii 1778 | . . . . 5 ⊢ (Ⅎ𝑥[𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 9 | 6, 8 | bitri 264 | . . . 4 ⊢ ([𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 10 | 9 | albii 1747 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 11 | 5, 10 | bitri 264 | . 2 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 12 | 1, 11 | bitri 264 | 1 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∀wal 1481 Ⅎwnf 1708 [wsb 1880 ∈ wcel 1990 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |