| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfext | Structured version Visualization version GIF version | ||
| Description: Closed form of nfex 2154. (Contributed by BJ, 10-Oct-2019.) |
| Ref | Expression |
|---|---|
| bj-nfext | ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5 2116 | . . . . 5 ⊢ (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑)) | |
| 2 | 1 | biimpi 206 | . . . 4 ⊢ (Ⅎ𝑦𝜑 → ∀𝑦(𝜑 → ∀𝑦𝜑)) |
| 3 | 2 | alimi 1739 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑)) |
| 4 | nfa2 2040 | . . . 4 ⊢ Ⅎ𝑦∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) | |
| 5 | bj-hbext 32701 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | |
| 6 | 4, 5 | alrimi 2082 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) → ∀𝑦(∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑦(∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) |
| 8 | nf5 2116 | . 2 ⊢ (Ⅎ𝑦∃𝑥𝜑 ↔ ∀𝑦(∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | |
| 9 | 7, 8 | sylibr 224 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |