![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtrALTALT | Structured version Visualization version GIF version |
Description: Alternate proof of bj-rabtr 32926. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-rabtrALTALT | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3687 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
2 | ssid 3624 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | tru 1487 | . . . 4 ⊢ ⊤ | |
4 | 3 | rgenw 2924 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ⊤ |
5 | ssrab 3680 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⊤)) | |
6 | 2, 4, 5 | mpbir2an 955 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | 1, 6 | eqssi 3619 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ⊤wtru 1484 ∀wral 2912 {crab 2916 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-in 3581 df-ss 3588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |