Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtrALTALT Structured version   Visualization version   GIF version

Theorem bj-rabtrALTALT 32928
Description: Alternate proof of bj-rabtr 32926. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rabtrALTALT {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtrALTALT
StepHypRef Expression
1 ssrab2 3687 . 2 {𝑥𝐴 ∣ ⊤} ⊆ 𝐴
2 ssid 3624 . . 3 𝐴𝐴
3 tru 1487 . . . 4
43rgenw 2924 . . 3 𝑥𝐴
5 ssrab 3680 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ ⊤} ↔ (𝐴𝐴 ∧ ∀𝑥𝐴 ⊤))
62, 4, 5mpbir2an 955 . 2 𝐴 ⊆ {𝑥𝐴 ∣ ⊤}
71, 6eqssi 3619 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wtru 1484  wral 2912  {crab 2916  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-in 3581  df-ss 3588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator