MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrab Structured version   Visualization version   GIF version

Theorem ssrab 3680
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssrab (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrab
StepHypRef Expression
1 df-rab 2921 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq2i 3630 . 2 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
3 ssab 3672 . 2 (𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
4 dfss3 3592 . . . 4 (𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
54anbi1i 731 . . 3 ((𝐵𝐴 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
6 r19.26 3064 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
7 df-ral 2917 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
85, 6, 73bitr2ri 289 . 2 (∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
92, 3, 83bitri 286 1 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wcel 1990  {cab 2608  wral 2912  {crab 2916  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-in 3581  df-ss 3588
This theorem is referenced by:  ssrabdv  3681  omssnlim  7079  ordtypelem2  8424  ordtypelem10  8432  card2inf  8460  r0weon  8835  ramtlecl  15704  sscntz  17759  ppttop  20811  epttop  20813  cmpcov2  21193  tgcmp  21204  xkoinjcn  21490  fbssfi  21641  filssufilg  21715  uffixfr  21727  tmdgsum2  21900  symgtgp  21905  ghmcnp  21918  blcls  22311  clsocv  23049  lhop1lem  23776  ressatans  24661  axcontlem3  25846  axcontlem4  25847  ldgenpisyslem3  30228  ldgenpisys  30229  imambfm  30324  connpconn  31217  cvmlift2lem11  31295  cvmlift2lem12  31296  bj-rabtr  32926  bj-rabtrALTALT  32928  hbtlem6  37699
  Copyright terms: Public domain W3C validator