![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru1 | Structured version Visualization version GIF version |
Description: A version of Russell's paradox ru 3434 (see also bj-ru 32934). Note the more economical use of bj-abeq2 32773 instead of abeq2 2732 to avoid dependency on ax-13 2246. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru1 | ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru0 32932 | . . 3 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥) | |
2 | bj-abeq2 32773 | . . 3 ⊢ (𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑥)) | |
3 | 1, 2 | mtbir 313 | . 2 ⊢ ¬ 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
4 | 3 | nex 1731 | 1 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1481 = wceq 1483 ∃wex 1704 {cab 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: bj-ru 32934 |
Copyright terms: Public domain | W3C validator |