MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ru Structured version   Visualization version   GIF version

Theorem ru 3434
Description: Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥𝑥𝑥} (the "Russell class") for 𝐴, it asserted {𝑥𝑥𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥𝑥𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom ssex 4802 asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. However, Zermelo was then faced with a "chicken and egg" problem of how to show 𝐵 is a set, leading him to introduce the set-building axioms of Null Set 0ex 4790, Pairing prex 4909, Union uniex 6953, Power Set pwex 4848, and Infinity omex 8540 to give him some starting sets to work with (all of which, before Russell's Paradox, were immediate consequences of Frege's Comprehension). In 1922 Fraenkel strengthened the Subset Axiom with our present Replacement Axiom funimaex 5976 (whose modern formalization is due to Skolem, also in 1922). Thus, in a very real sense Russell's Paradox spawned the invention of ZF set theory and completely revised the foundations of mathematics!

Another mainstream formalization of set theory, devised by von Neumann, Bernays, and Goedel, uses class variables rather than setvar variables as its primitives. The axiom system NBG in [Mendelson] p. 225 is suitable for a Metamath encoding. NBG is a conservative extension of ZF in that it proves exactly the same theorems as ZF that are expressible in the language of ZF. An advantage of NBG is that it is finitely axiomatizable - the Axiom of Replacement can be broken down into a finite set of formulas that eliminate its wff metavariable. Finite axiomatizability is required by some proof languages (although not by Metamath). There is a stronger version of NBG called Morse-Kelley (axiom system MK in [Mendelson] p. 287).

Russell himself continued in a different direction, avoiding the paradox with his "theory of types." Quine extended Russell's ideas to formulate his New Foundations set theory (axiom system NF of [Quine] p. 331). In NF, the collection of all sets is a set, contradicting ZF and NBG set theories, and it has other bizarre consequences: when sets become too huge (beyond the size of those used in standard mathematics), the Axiom of Choice ac4 9297 and Cantor's Theorem canth 6608 are provably false! (See ncanth 6609 for some intuition behind the latter.) Recent results (as of 2014) seem to show that NF is equiconsistent to Z (ZF in which ax-sep 4781 replaces ax-rep 4771) with ax-sep 4781 restricted to only bounded quantifiers. NF is finitely axiomatizable and can be encoded in Metamath using the axioms from T. Hailperin, "A set of axioms for logic," J. Symb. Logic 9:1-19 (1944).

Under our ZF set theory, every set is a member of the Russell class by elirrv 8504 (derived from the Axiom of Regularity), so for us the Russell class equals the universe V (theorem ruv 8507). See ruALT 8508 for an alternate proof of ru 3434 derived from that fact. (Contributed by NM, 7-Aug-1994.)

Assertion
Ref Expression
ru {𝑥𝑥𝑥} ∉ V

Proof of Theorem ru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm5.19 375 . . . . . 6 ¬ (𝑦𝑦 ↔ ¬ 𝑦𝑦)
2 eleq1 2689 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
3 df-nel 2898 . . . . . . . . 9 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
4 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
54, 4eleq12d 2695 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
65notbid 308 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
73, 6syl5bb 272 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
82, 7bibi12d 335 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑥) ↔ (𝑦𝑦 ↔ ¬ 𝑦𝑦)))
98spv 2260 . . . . . 6 (∀𝑥(𝑥𝑦𝑥𝑥) → (𝑦𝑦 ↔ ¬ 𝑦𝑦))
101, 9mto 188 . . . . 5 ¬ ∀𝑥(𝑥𝑦𝑥𝑥)
11 abeq2 2732 . . . . 5 (𝑦 = {𝑥𝑥𝑥} ↔ ∀𝑥(𝑥𝑦𝑥𝑥))
1210, 11mtbir 313 . . . 4 ¬ 𝑦 = {𝑥𝑥𝑥}
1312nex 1731 . . 3 ¬ ∃𝑦 𝑦 = {𝑥𝑥𝑥}
14 isset 3207 . . 3 ({𝑥𝑥𝑥} ∈ V ↔ ∃𝑦 𝑦 = {𝑥𝑥𝑥})
1513, 14mtbir 313 . 2 ¬ {𝑥𝑥𝑥} ∈ V
1615nelir 2900 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wal 1481   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wnel 2897  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nel 2898  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator