Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbfv Structured version   Visualization version   GIF version

Theorem bj-sbfv 32764
Description: Version of sbf 2380 with a dv condition, which does not require ax-13 2246. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-sbfv.1 𝑥𝜑
Assertion
Ref Expression
bj-sbfv ([𝑦 / 𝑥]𝜑𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-sbfv
StepHypRef Expression
1 bj-sbfv.1 . 2 𝑥𝜑
2 bj-sbftv 32763 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wnf 1708  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator