| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbfvv | Structured version Visualization version GIF version | ||
| Description: Version of sbf 2380 with two dv conditions, which does not require ax-10 2019 nor ax-13 2246. (Contributed by BJ, 1-May-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-sbfvv | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe 1884 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | 19.9v 1896 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | sylib 208 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜑) |
| 4 | ax-5 1839 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 5 | bj-stdpc4v 32754 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑦 / 𝑥]𝜑) |
| 7 | 3, 6 | impbii 199 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∀wal 1481 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 |
| This theorem is referenced by: bj-vjust2 33015 |
| Copyright terms: Public domain | W3C validator |