| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbe | Structured version Visualization version GIF version | ||
| Description: A specialization theorem. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.) |
| Ref | Expression |
|---|---|
| spsbe | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb1 1883 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | exsimpr 1796 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 |
| This theorem is referenced by: sbft 2379 2mo 2551 bj-sbftv 32763 bj-sbfvv 32765 wl-lem-moexsb 33350 spsbce-2 38580 sb5ALT 38731 sb5ALTVD 39149 |
| Copyright terms: Public domain | W3C validator |