| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spimtv | Structured version Visualization version GIF version | ||
| Description: Version of spimt 2253 with a dv condition, which does not require ax-13 2246. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-spimtv | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1890 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | exim 1761 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝜑 → 𝜓))) | |
| 3 | 1, 2 | mpi 20 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ∃𝑥(𝜑 → 𝜓)) |
| 4 | 19.35 1805 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 5 | 3, 4 | sylib 208 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| 6 | 19.9t 2071 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 ↔ 𝜓)) | |
| 7 | 6 | biimpd 219 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) |
| 8 | 5, 7 | sylan9r 690 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |