Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1113 Structured version   Visualization version   GIF version

Theorem bnj1113 30856
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1113.1 (𝐴 = 𝐵𝐶 = 𝐷)
Assertion
Ref Expression
bnj1113 (𝐴 = 𝐵 𝑥𝐶 𝐸 = 𝑥𝐷 𝐸)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem bnj1113
StepHypRef Expression
1 bnj1113.1 . 2 (𝐴 = 𝐵𝐶 = 𝐷)
21iuneq1d 4545 1 (𝐴 = 𝐵 𝑥𝐶 𝐸 = 𝑥𝐷 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-iun 4522
This theorem is referenced by:  bnj106  30938  bnj222  30953  bnj540  30962  bnj553  30968  bnj611  30988  bnj966  31014  bnj1112  31051
  Copyright terms: Public domain W3C validator