Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj540 Structured version   Visualization version   GIF version

Theorem bnj540 30962
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj540.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj540.2 (𝜓″[𝐺 / 𝑓]𝜓)
bnj540.3 𝐺 ∈ V
Assertion
Ref Expression
bnj540 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺,𝑖,𝑦   𝑓,𝑁   𝑅,𝑓
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝑁(𝑦,𝑖)   𝜓″(𝑦,𝑓,𝑖)

Proof of Theorem bnj540
StepHypRef Expression
1 bnj540.2 . 2 (𝜓″[𝐺 / 𝑓]𝜓)
2 bnj540.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
32sbcbii 3491 . . 3 ([𝐺 / 𝑓]𝜓[𝐺 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj540.3 . . . 4 𝐺 ∈ V
54bnj538 30809 . . 3 ([𝐺 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 sbcimg 3477 . . . . 5 (𝐺 ∈ V → ([𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
74, 6ax-mp 5 . . . 4 ([𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
87ralbii 2980 . . 3 (∀𝑖 ∈ ω [𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
93, 5, 83bitri 286 . 2 ([𝐺 / 𝑓]𝜓 ↔ ∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
104bnj525 30807 . . . 4 ([𝐺 / 𝑓]suc 𝑖𝑁 ↔ suc 𝑖𝑁)
11 fveq1 6190 . . . . . 6 (𝑓 = 𝐺 → (𝑓‘suc 𝑖) = (𝐺‘suc 𝑖))
12 fveq1 6190 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝑖) = (𝐺𝑖))
1312bnj1113 30856 . . . . . 6 (𝑓 = 𝐺 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1411, 13eqeq12d 2637 . . . . 5 (𝑓 = 𝐺 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
154, 14sbcie 3470 . . . 4 ([𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1610, 15imbi12i 340 . . 3 (([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
1716ralbii 2980 . 2 (∀𝑖 ∈ ω ([𝐺 / 𝑓]suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
181, 9, 173bitri 286 1 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  [wsbc 3435   ciun 4520  suc csuc 5725  cfv 5888  ωcom 7065   predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-in 3581  df-ss 3588  df-uni 4437  df-iun 4522  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  bnj580  30983  bnj607  30986
  Copyright terms: Public domain W3C validator