| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1405 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1405.1 | ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| bnj1405 | ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1405.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵) | |
| 2 | eliun 4524 | . 2 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) | |
| 3 | 1, 2 | sylib 208 | 1 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1990 ∃wrex 2913 ∪ ciun 4520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-iun 4522 |
| This theorem is referenced by: bnj1408 31104 bnj1450 31118 bnj1501 31135 |
| Copyright terms: Public domain | W3C validator |