Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1501 Structured version   Visualization version   GIF version

Theorem bnj1501 31135
Description: Technical lemma for bnj1500 31136. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1501.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1501.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1501.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1501.4 𝐹 = 𝐶
bnj1501.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
bnj1501.6 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
bnj1501.7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
Assertion
Ref Expression
bnj1501 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥   𝑌,𝑑   𝜑,𝑑,𝑓
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓)

Proof of Theorem bnj1501
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1501.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
21simprbi 480 . . . . . . . 8 (𝜑𝑥𝐴)
3 bnj1501.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4 bnj1501.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
5 bnj1501.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
6 bnj1501.4 . . . . . . . . . . 11 𝐹 = 𝐶
73, 4, 5, 6bnj60 31130 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
8 fndm 5990 . . . . . . . . . 10 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
97, 8syl 17 . . . . . . . . 9 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
101, 9bnj832 30828 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
112, 10eleqtrrd 2704 . . . . . . 7 (𝜑𝑥 ∈ dom 𝐹)
126dmeqi 5325 . . . . . . . 8 dom 𝐹 = dom 𝐶
135bnj1317 30892 . . . . . . . . 9 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1413bnj1400 30906 . . . . . . . 8 dom 𝐶 = 𝑓𝐶 dom 𝑓
1512, 14eqtri 2644 . . . . . . 7 dom 𝐹 = 𝑓𝐶 dom 𝑓
1611, 15syl6eleq 2711 . . . . . 6 (𝜑𝑥 𝑓𝐶 dom 𝑓)
1716bnj1405 30907 . . . . 5 (𝜑 → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
18 bnj1501.6 . . . . 5 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
1917, 18bnj1209 30867 . . . 4 (𝜑 → ∃𝑓𝜓)
205bnj1436 30910 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
2120bnj1299 30889 . . . . . . . . 9 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
22 fndm 5990 . . . . . . . . 9 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
2321, 22bnj31 30785 . . . . . . . 8 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
2418, 23bnj836 30830 . . . . . . 7 (𝜓 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
25 bnj1501.7 . . . . . . 7 (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))
263, 4, 5, 6, 1, 18bnj1518 31132 . . . . . . 7 (𝜓 → ∀𝑑𝜓)
2724, 25, 26bnj1521 30921 . . . . . 6 (𝜓 → ∃𝑑𝜒)
287bnj930 30840 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴 → Fun 𝐹)
291, 28bnj832 30828 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
3018, 29bnj835 30829 . . . . . . . . . 10 (𝜓 → Fun 𝐹)
31 elssuni 4467 . . . . . . . . . . . 12 (𝑓𝐶𝑓 𝐶)
3231, 6syl6sseqr 3652 . . . . . . . . . . 11 (𝑓𝐶𝑓𝐹)
3318, 32bnj836 30830 . . . . . . . . . 10 (𝜓𝑓𝐹)
3418simp3bi 1078 . . . . . . . . . 10 (𝜓𝑥 ∈ dom 𝑓)
3530, 33, 34bnj1502 30918 . . . . . . . . 9 (𝜓 → (𝐹𝑥) = (𝑓𝑥))
363, 4, 5bnj1514 31131 . . . . . . . . . . 11 (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3718, 36bnj836 30830 . . . . . . . . . 10 (𝜓 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
3837, 34bnj1294 30888 . . . . . . . . 9 (𝜓 → (𝑓𝑥) = (𝐺𝑌))
3935, 38eqtrd 2656 . . . . . . . 8 (𝜓 → (𝐹𝑥) = (𝐺𝑌))
4025, 39bnj835 30829 . . . . . . 7 (𝜒 → (𝐹𝑥) = (𝐺𝑌))
4125, 30bnj835 30829 . . . . . . . . . . 11 (𝜒 → Fun 𝐹)
4225, 33bnj835 30829 . . . . . . . . . . 11 (𝜒𝑓𝐹)
433bnj1517 30920 . . . . . . . . . . . . . 14 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4425, 43bnj836 30830 . . . . . . . . . . . . 13 (𝜒 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4525, 34bnj835 30829 . . . . . . . . . . . . . 14 (𝜒𝑥 ∈ dom 𝑓)
4625simp3bi 1078 . . . . . . . . . . . . . 14 (𝜒 → dom 𝑓 = 𝑑)
4745, 46eleqtrd 2703 . . . . . . . . . . . . 13 (𝜒𝑥𝑑)
4844, 47bnj1294 30888 . . . . . . . . . . . 12 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
4948, 46sseqtr4d 3642 . . . . . . . . . . 11 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑓)
5041, 42, 49bnj1503 30919 . . . . . . . . . 10 (𝜒 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
5150opeq2d 4409 . . . . . . . . 9 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
5251, 4syl6eqr 2674 . . . . . . . 8 (𝜒 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
5352fveq2d 6195 . . . . . . 7 (𝜒 → (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
5440, 53eqtr4d 2659 . . . . . 6 (𝜒 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5527, 54bnj593 30815 . . . . 5 (𝜓 → ∃𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
563, 4, 5, 6bnj1519 31133 . . . . 5 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5755, 56bnj1397 30905 . . . 4 (𝜓 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
5819, 57bnj593 30815 . . 3 (𝜑 → ∃𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
593, 4, 5, 6bnj1520 31134 . . 3 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
6058, 59bnj1397 30905 . 2 (𝜑 → (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
611, 60bnj1459 30913 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  wss 3574  cop 4183   cuni 4436   ciun 4520  dom cdm 5114  cres 5116  Fun wfun 5882   Fn wfn 5883  cfv 5888   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1500  31136
  Copyright terms: Public domain W3C validator