![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1416 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1416.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1416.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1416.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1416.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1416.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1416.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1416.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1416.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1416.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1416.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1416.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1416.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1416.28 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
bnj1416 | ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1416.12 | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
2 | 1 | dmeqi 5325 | . . 3 ⊢ dom 𝑄 = dom (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
3 | dmun 5331 | . . 3 ⊢ dom (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) = (dom 𝑃 ∪ dom {〈𝑥, (𝐺‘𝑍)〉}) | |
4 | fvex 6201 | . . . . 5 ⊢ (𝐺‘𝑍) ∈ V | |
5 | 4 | dmsnop 5609 | . . . 4 ⊢ dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥} |
6 | 5 | uneq2i 3764 | . . 3 ⊢ (dom 𝑃 ∪ dom {〈𝑥, (𝐺‘𝑍)〉}) = (dom 𝑃 ∪ {𝑥}) |
7 | 2, 3, 6 | 3eqtri 2648 | . 2 ⊢ dom 𝑄 = (dom 𝑃 ∪ {𝑥}) |
8 | bnj1416.28 | . . . 4 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
9 | 8 | uneq1d 3766 | . . 3 ⊢ (𝜒 → (dom 𝑃 ∪ {𝑥}) = ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥})) |
10 | uncom 3757 | . . 3 ⊢ ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | |
11 | 9, 10 | syl6eq 2672 | . 2 ⊢ (𝜒 → (dom 𝑃 ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
12 | 7, 11 | syl5eq 2668 | 1 ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 {crab 2916 [wsbc 3435 ∪ cun 3572 ⊆ wss 3574 ∅c0 3915 {csn 4177 〈cop 4183 ∪ cuni 4436 class class class wbr 4653 dom cdm 5114 ↾ cres 5116 Fn wfn 5883 ‘cfv 5888 predc-bnj14 30754 FrSe w-bnj15 30758 trClc-bnj18 30760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 |
This theorem is referenced by: bnj1312 31126 |
Copyright terms: Public domain | W3C validator |