Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1416 Structured version   Visualization version   GIF version

Theorem bnj1416 31107
Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1416.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1416.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1416.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1416.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1416.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1416.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1416.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1416.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1416.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1416.10 𝑃 = 𝐻
bnj1416.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1416.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1416.28 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1416 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))

Proof of Theorem bnj1416
StepHypRef Expression
1 bnj1416.12 . . . 4 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
21dmeqi 5325 . . 3 dom 𝑄 = dom (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3 dmun 5331 . . 3 dom (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}) = (dom 𝑃 ∪ dom {⟨𝑥, (𝐺𝑍)⟩})
4 fvex 6201 . . . . 5 (𝐺𝑍) ∈ V
54dmsnop 5609 . . . 4 dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥}
65uneq2i 3764 . . 3 (dom 𝑃 ∪ dom {⟨𝑥, (𝐺𝑍)⟩}) = (dom 𝑃 ∪ {𝑥})
72, 3, 63eqtri 2648 . 2 dom 𝑄 = (dom 𝑃 ∪ {𝑥})
8 bnj1416.28 . . . 4 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
98uneq1d 3766 . . 3 (𝜒 → (dom 𝑃 ∪ {𝑥}) = ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}))
10 uncom 3757 . . 3 ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
119, 10syl6eq 2672 . 2 (𝜒 → (dom 𝑃 ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
127, 11syl5eq 2668 1 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  [wsbc 3435  cun 3572  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  dom cdm 5114  cres 5116   Fn wfn 5883  cfv 5888   predc-bnj14 30754   FrSe w-bnj15 30758   trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896
This theorem is referenced by:  bnj1312  31126
  Copyright terms: Public domain W3C validator