![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj155 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj153 30950. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj155.1 | ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) |
bnj155.2 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj155 | ⊢ (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj155.1 | . 2 ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) | |
2 | bnj155.2 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | 2 | sbcbii 3491 | . 2 ⊢ ([𝑔 / 𝑓]𝜓′ ↔ [𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
4 | vex 3203 | . . 3 ⊢ 𝑔 ∈ V | |
5 | fveq1 6190 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖)) | |
6 | fveq1 6190 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑓‘𝑖) = (𝑔‘𝑖)) | |
7 | 6 | iuneq1d 4545 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
8 | 5, 7 | eqeq12d 2637 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
9 | 8 | imbi2d 330 | . . . 4 ⊢ (𝑓 = 𝑔 → ((suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
10 | 9 | ralbidv 2986 | . . 3 ⊢ (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
11 | 4, 10 | sbcie 3470 | . 2 ⊢ ([𝑔 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
12 | 1, 3, 11 | 3bitri 286 | 1 ⊢ (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝑔‘suc 𝑖) = ∪ 𝑦 ∈ (𝑔‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∀wral 2912 [wsbc 3435 ∪ ciun 4520 suc csuc 5725 ‘cfv 5888 ωcom 7065 1𝑜c1o 7553 predc-bnj14 30754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-in 3581 df-ss 3588 df-uni 4437 df-iun 4522 df-br 4654 df-iota 5851 df-fv 5896 |
This theorem is referenced by: bnj153 30950 |
Copyright terms: Public domain | W3C validator |