Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj155 Structured version   Visualization version   Unicode version

Theorem bnj155 30949
Description: Technical lemma for bnj153 30950. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj155.1  |-  ( ps1  <->  [. g  /  f ]. ps' )
bnj155.2  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj155  |-  ( ps1  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )
Distinct variable groups:    A, f    R, f    f, g, i, y
Allowed substitution hints:    A( y, g, i)    R( y, g, i)    ps'( y, f, g, i)    ps1( y, f, g, i)

Proof of Theorem bnj155
StepHypRef Expression
1 bnj155.1 . 2  |-  ( ps1  <->  [. g  /  f ]. ps' )
2 bnj155.2 . . 3  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
32sbcbii 3491 . 2  |-  ( [. g  /  f ]. ps'  <->  [. g  / 
f ]. A. i  e. 
om  ( suc  i  e.  1o  ->  ( f `  suc  i )  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
4 vex 3203 . . 3  |-  g  e. 
_V
5 fveq1 6190 . . . . . 6  |-  ( f  =  g  ->  (
f `  suc  i )  =  ( g `  suc  i ) )
6 fveq1 6190 . . . . . . 7  |-  ( f  =  g  ->  (
f `  i )  =  ( g `  i ) )
76iuneq1d 4545 . . . . . 6  |-  ( f  =  g  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) )
85, 7eqeq12d 2637 . . . . 5  |-  ( f  =  g  ->  (
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  <->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
98imbi2d 330 . . . 4  |-  ( f  =  g  ->  (
( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  ( suc  i  e.  1o  ->  ( g `  suc  i
)  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) ) ) )
109ralbidv 2986 . . 3  |-  ( f  =  g  ->  ( A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) ) )
114, 10sbcie 3470 . 2  |-  ( [. g  /  f ]. A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
121, 3, 113bitri 286 1  |-  ( ps1  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   [.wsbc 3435   U_ciun 4520   suc csuc 5725   ` cfv 5888   omcom 7065   1oc1o 7553    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-in 3581  df-ss 3588  df-uni 4437  df-iun 4522  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  bnj153  30950
  Copyright terms: Public domain W3C validator