| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj596 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj596.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| bnj596.2 | ⊢ (𝜑 → ∃𝑥𝜓) |
| Ref | Expression |
|---|---|
| bnj596 | ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj596.2 | . . 3 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | 1 | ancli 574 | . 2 ⊢ (𝜑 → (𝜑 ∧ ∃𝑥𝜓)) |
| 3 | bnj596.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 3 | nf5i 2024 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 5 | 4 | 19.42-1 2104 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: bnj1275 30884 bnj1340 30894 bnj594 30982 bnj1398 31102 |
| Copyright terms: Public domain | W3C validator |