Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj610 Structured version   Visualization version   GIF version

Theorem bnj610 30817
Description: Pass from equality (𝑥 = 𝐴) to substitution ([𝐴 / 𝑥]) without the distinct variable restriction ($d 𝐴 𝑥). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj610.1 𝐴 ∈ V
bnj610.2 (𝑥 = 𝐴 → (𝜑𝜓))
bnj610.3 (𝑥 = 𝑦 → (𝜑𝜓′))
bnj610.4 (𝑦 = 𝐴 → (𝜓′𝜓))
Assertion
Ref Expression
bnj610 ([𝐴 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝜓,𝑦   𝑥,𝜓′   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)   𝜓′(𝑦)

Proof of Theorem bnj610
StepHypRef Expression
1 vex 3203 . . . 4 𝑦 ∈ V
2 bnj610.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓′))
31, 2sbcie 3470 . . 3 ([𝑦 / 𝑥]𝜑𝜓′)
43sbcbii 3491 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑦]𝜓′)
5 sbcco 3458 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
6 bnj610.1 . . 3 𝐴 ∈ V
7 bnj610.4 . . 3 (𝑦 = 𝐴 → (𝜓′𝜓))
86, 7sbcie 3470 . 2 ([𝐴 / 𝑦]𝜓′𝜓)
94, 5, 83bitr3i 290 1 ([𝐴 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  Vcvv 3200  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  bnj611  30988  bnj1000  31011
  Copyright terms: Public domain W3C validator