Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brifs Structured version   Visualization version   GIF version

Theorem brifs 32150
Description: Binary relation form of the inner five segment predicate. (Contributed by Scott Fenton, 26-Sep-2013.)
Assertion
Ref Expression
brifs (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))

Proof of Theorem brifs
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑝 𝑞 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4402 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
21breq2d 4665 . . . 4 (𝑎 = 𝐴 → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 Btwn ⟨𝐴, 𝑐⟩))
32anbi1d 741 . . 3 (𝑎 = 𝐴 → ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
41breq1d 4663 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩))
54anbi1d 741 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
6 opeq1 4402 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩)
76breq1d 4663 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩))
87anbi1d 741 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)))
93, 5, 83anbi123d 1399 . 2 (𝑎 = 𝐴 → (((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩))))
10 breq1 4656 . . . 4 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝑐⟩))
1110anbi1d 741 . . 3 (𝑏 = 𝐵 → ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
12 opeq1 4402 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1312breq1d 4663 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩))
1413anbi2d 740 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
1511, 143anbi12d 1400 . 2 (𝑏 = 𝐵 → (((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩))))
16 opeq2 4403 . . . . 5 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
1716breq2d 4665 . . . 4 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝐶⟩))
1817anbi1d 741 . . 3 (𝑐 = 𝐶 → ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
1916breq1d 4663 . . . 4 (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩))
20 opeq2 4403 . . . . 5 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2120breq1d 4663 . . . 4 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩))
2219, 21anbi12d 747 . . 3 (𝑐 = 𝐶 → ((⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
23 opeq1 4402 . . . . 5 (𝑐 = 𝐶 → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝑑⟩)
2423breq1d 4663 . . . 4 (𝑐 = 𝐶 → (⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩ ↔ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩))
2524anbi2d 740 . . 3 (𝑐 = 𝐶 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩)))
2618, 22, 253anbi123d 1399 . 2 (𝑐 = 𝐶 → (((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩))))
27 opeq2 4403 . . . . 5 (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩)
2827breq1d 4663 . . . 4 (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩))
29 opeq2 4403 . . . . 5 (𝑑 = 𝐷 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
3029breq1d 4663 . . . 4 (𝑑 = 𝐷 → (⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))
3128, 30anbi12d 747 . . 3 (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)))
32313anbi3d 1405 . 2 (𝑑 = 𝐷 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))))
33 opeq1 4402 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, 𝑔⟩ = ⟨𝐸, 𝑔⟩)
3433breq2d 4665 . . . 4 (𝑒 = 𝐸 → (𝑓 Btwn ⟨𝑒, 𝑔⟩ ↔ 𝑓 Btwn ⟨𝐸, 𝑔⟩))
3534anbi2d 740 . . 3 (𝑒 = 𝐸 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩)))
3633breq2d 4665 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩))
3736anbi1d 741 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
38 opeq1 4402 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, ⟩ = ⟨𝐸, ⟩)
3938breq2d 4665 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩))
4039anbi1d 741 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)))
4135, 37, 403anbi123d 1399 . 2 (𝑒 = 𝐸 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))))
42 breq1 4656 . . . 4 (𝑓 = 𝐹 → (𝑓 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝑔⟩))
4342anbi2d 740 . . 3 (𝑓 = 𝐹 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩)))
44 opeq1 4402 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩)
4544breq2d 4665 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩))
4645anbi2d 740 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩)))
4743, 463anbi12d 1400 . 2 (𝑓 = 𝐹 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))))
48 opeq2 4403 . . . . 5 (𝑔 = 𝐺 → ⟨𝐸, 𝑔⟩ = ⟨𝐸, 𝐺⟩)
4948breq2d 4665 . . . 4 (𝑔 = 𝐺 → (𝐹 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝐺⟩))
5049anbi2d 740 . . 3 (𝑔 = 𝐺 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)))
5148breq2d 4665 . . . 4 (𝑔 = 𝐺 → (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩))
52 opeq2 4403 . . . . 5 (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩)
5352breq2d 4665 . . . 4 (𝑔 = 𝐺 → (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩))
5451, 53anbi12d 747 . . 3 (𝑔 = 𝐺 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)))
55 opeq1 4402 . . . . 5 (𝑔 = 𝐺 → ⟨𝑔, ⟩ = ⟨𝐺, ⟩)
5655breq2d 4665 . . . 4 (𝑔 = 𝐺 → (⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩))
5756anbi2d 740 . . 3 (𝑔 = 𝐺 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩)))
5850, 54, 573anbi123d 1399 . 2 (𝑔 = 𝐺 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩))))
59 opeq2 4403 . . . . 5 ( = 𝐻 → ⟨𝐸, ⟩ = ⟨𝐸, 𝐻⟩)
6059breq2d 4665 . . . 4 ( = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩))
61 opeq2 4403 . . . . 5 ( = 𝐻 → ⟨𝐺, ⟩ = ⟨𝐺, 𝐻⟩)
6261breq2d 4665 . . . 4 ( = 𝐻 → (⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
6360, 62anbi12d 747 . . 3 ( = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
64633anbi3d 1405 . 2 ( = 𝐻 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
65 fveq2 6191 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
66 df-ifs 32147 . 2 InnerFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)))}
679, 15, 26, 32, 41, 47, 58, 64, 65, 66br8 31646 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653  cfv 5888  cn 11020  𝔼cee 25768   Btwn cbtwn 25769  Cgrccgr 25770   InnerFiveSeg cifs 32142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ifs 32147
This theorem is referenced by:  ifscgr  32151  cgrsub  32152  btwnxfr  32163  brifs2  32185  btwnconn1lem6  32199
  Copyright terms: Public domain W3C validator