MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-opab Structured version   Visualization version   GIF version

Definition df-opab 4713
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition doesn't strictly require it (see dfid2 5027 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7222. For example, 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4 (ex-opab 27289). (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-opab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
41, 2, 3copab 4712 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 vz . . . . . . . 8 setvar 𝑧
65cv 1482 . . . . . . 7 class 𝑧
72cv 1482 . . . . . . . 8 class 𝑥
83cv 1482 . . . . . . . 8 class 𝑦
97, 8cop 4183 . . . . . . 7 class 𝑥, 𝑦
106, 9wceq 1483 . . . . . 6 wff 𝑧 = ⟨𝑥, 𝑦
1110, 1wa 384 . . . . 5 wff (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1211, 3wex 1704 . . . 4 wff 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1312, 2wex 1704 . . 3 wff 𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1413, 5cab 2608 . 2 class {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
154, 14wceq 1483 1 wff {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff setvar class
This definition is referenced by:  opabss  4714  opabbid  4715  nfopab  4718  nfopab1  4719  nfopab2  4720  cbvopab  4721  cbvopab1  4723  cbvopab2  4724  cbvopab1s  4725  cbvopab2v  4727  unopab  4728  opabid  4982  elopab  4983  ssopab2  5001  iunopab  5012  dfid3  5025  elxpi  5130  rabxp  5154  csbxp  5200  ssrel  5207  relopabi  5245  relopabiALT  5246  opabssxpd  5338  cnv0  5535  dfoprab2  6701  dmoprab  6741  dfopab2  7222  brdom7disj  9353  brdom6disj  9354  cnvoprab  29498  dropab1  38651  dropab2  38652  csbxpgOLD  39053  csbxpgVD  39130  relopabVD  39137
  Copyright terms: Public domain W3C validator