![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brintclab | Structured version Visualization version GIF version |
Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.) |
Ref | Expression |
---|---|
brintclab | ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4654 | . 2 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑}) | |
2 | opex 4932 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | elintab 4487 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
4 | 1, 3 | bitri 264 | 1 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∈ wcel 1990 {cab 2608 〈cop 4183 ∩ cint 4475 class class class wbr 4653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-int 4476 df-br 4654 |
This theorem is referenced by: brtrclfv 13743 |
Copyright terms: Public domain | W3C validator |