MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brintclab Structured version   Visualization version   Unicode version

Theorem brintclab 13742
Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.)
Assertion
Ref Expression
brintclab  |-  ( A
|^| { x  |  ph } B  <->  A. x ( ph  -> 
<. A ,  B >.  e.  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem brintclab
StepHypRef Expression
1 df-br 4654 . 2  |-  ( A
|^| { x  |  ph } B  <->  <. A ,  B >.  e.  |^| { x  | 
ph } )
2 opex 4932 . . 3  |-  <. A ,  B >.  e.  _V
32elintab 4487 . 2  |-  ( <. A ,  B >.  e. 
|^| { x  |  ph } 
<-> 
A. x ( ph  -> 
<. A ,  B >.  e.  x ) )
41, 3bitri 264 1  |-  ( A
|^| { x  |  ph } B  <->  A. x ( ph  -> 
<. A ,  B >.  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    e. wcel 1990   {cab 2608   <.cop 4183   |^|cint 4475   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-int 4476  df-br 4654
This theorem is referenced by:  brtrclfv  13743
  Copyright terms: Public domain W3C validator