MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropaex12 Structured version   Visualization version   GIF version

Theorem bropaex12 5192
Description: Two classes related by an ordered pair class builder are sets. (Contributed by AV, 21-Jan-2020.)
Hypothesis
Ref Expression
bropaex12.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
Assertion
Ref Expression
bropaex12 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem bropaex12
StepHypRef Expression
1 df-br 4654 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 bropaex12.1 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜓}
32eleq2i 2693 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
41, 3bitri 264 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
5 elopaelxp 5191 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ⟨𝐴, 𝐵⟩ ∈ (V × V))
64, 5sylbi 207 . 2 (𝐴𝑅𝐵 → ⟨𝐴, 𝐵⟩ ∈ (V × V))
7 opelxp 5146 . 2 (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
86, 7sylib 208 1 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   class class class wbr 4653  {copab 4712   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120
This theorem is referenced by:  fpwwe  9468  efgrelexlema  18162  brsslt  31900  clcllaw  41827  asslawass  41829
  Copyright terms: Public domain W3C validator