| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > casesifp | Structured version Visualization version GIF version | ||
| Description: Version of cases 992 expressed using if-. Case disjunction according to the value of 𝜑. One can see this as a proof that the two hypotheses characterize the conditional operator for propositions. For the converses, see ifptru 1023 and ifpfal 1024. (Contributed by BJ, 20-Sep-2019.) |
| Ref | Expression |
|---|---|
| casesifp.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| casesifp.2 | ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| casesifp | ⊢ (𝜓 ↔ if-(𝜑, 𝜒, 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | casesifp.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | casesifp.2 | . . 3 ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | cases 992 | . 2 ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
| 4 | df-ifp 1013 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜃) ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) | |
| 5 | 3, 4 | bitr4i 267 | 1 ⊢ (𝜓 ↔ if-(𝜑, 𝜒, 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: hadifp 1544 cadifp 1557 |
| Copyright terms: Public domain | W3C validator |