| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviinv | Structured version Visualization version GIF version | ||
| Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviinv | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2764 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 2 | nfcv 2764 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | cbviunv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 4 | 1, 2, 3 | cbviin 4558 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∩ ciin 4521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-iin 4523 |
| This theorem is referenced by: meaiininc 40701 iinhoiicc 40888 smflimlem3 40981 smflimlem4 40982 smflimlem6 40984 smfsuplem2 41018 smflimsuplem1 41026 smflimsup 41034 |
| Copyright terms: Public domain | W3C validator |