Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem4 Structured version   Visualization version   GIF version

Theorem smflimlem4 40982
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem4.1 (𝜑𝑀 ∈ ℤ)
smflimlem4.2 𝑍 = (ℤ𝑀)
smflimlem4.3 (𝜑𝑆 ∈ SAlg)
smflimlem4.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem4.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem4.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem4.7 (𝜑𝐴 ∈ ℝ)
smflimlem4.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem4.9 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem4.10 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem4.11 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem4 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Distinct variable groups:   𝑥,𝑘,𝐴,𝑚   𝐴,𝑠   𝑘,𝑚,𝑠   𝑥,𝐴,𝑚   𝐶,𝑘,𝑚,𝑠   𝐶,𝑟,𝑘   𝐷,𝑘,𝑚,𝑛,𝑥   𝐷,𝑟,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑚,𝐺   𝑘,𝐻,𝑚,𝑛   𝑘,𝐼,𝑚,𝑥   𝐼,𝑟   𝑚,𝑀   𝑃,𝑘,𝑚,𝑠   𝑃,𝑟   𝑆,𝑘,𝑚,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑛,𝑟)   𝐶(𝑥,𝑛)   𝐷(𝑠)   𝑃(𝑥,𝑛)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑟)   𝐺(𝑥,𝑘,𝑛,𝑠,𝑟)   𝐻(𝑥,𝑠,𝑟)   𝐼(𝑛,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem4
Dummy variables 𝑖 𝑗 𝑧 𝑦 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . 3 (𝐷𝐼) ⊆ 𝐷
21a1i 11 . 2 (𝜑 → (𝐷𝐼) ⊆ 𝐷)
32sselda 3603 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝑥𝐷)
4 smflimlem4.6 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
6 nfv 1843 . . . . . . . . . . 11 𝑚(𝜑𝑥𝐷)
7 nfcv 2764 . . . . . . . . . . 11 𝑚𝐹
8 nfcv 2764 . . . . . . . . . . 11 𝑧𝐹
9 smflimlem4.2 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
10 smflimlem4.3 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1110adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
12 smflimlem4.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1312ffvelrnda 6359 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
14 eqid 2622 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
1511, 13, 14smff 40941 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1615adantlr 751 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
17 smflimlem4.5 . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
18 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
1918mpteq2dv 4745 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
2019eleq1d 2686 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ ))
2120cbvrabv 3199 . . . . . . . . . . . 12 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
2217, 21eqtri 2644 . . . . . . . . . . 11 𝐷 = {𝑧 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ∈ dom ⇝ }
23 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝑥𝐷)
246, 7, 8, 9, 16, 22, 23fnlimfvre 39906 . . . . . . . . . 10 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
2524elexd 3214 . . . . . . . . 9 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ V)
265, 25fvmpt2d 6293 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
2726, 24eqeltrd 2701 . . . . . . 7 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
283, 27syldan 487 . . . . . 6 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℝ)
2928adantr 481 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ∈ ℝ)
30 smflimlem4.7 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3130adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℝ)
32 rpre 11839 . . . . . . . 8 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
3332adantl 482 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
3431, 33readdcld 10069 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
3534adantlr 751 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐴 + 𝑦) ∈ ℝ)
36 nfv 1843 . . . . . . . 8 𝑚((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
37 rphalfcl 11858 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
38 rpgtrecnn 39597 . . . . . . . . . . 11 ((𝑦 / 2) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
3937, 38syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4039adantl 482 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2))
4110ad4antr 768 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑆 ∈ SAlg)
4213adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4342ad5ant15 1303 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
4430adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐷𝐼)) → 𝐴 ∈ ℝ)
4544ad3antrrr 766 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝐴 ∈ ℝ)
46 smflimlem4.8 . . . . . . . . . . . . 13 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
47 nfcv 2764 . . . . . . . . . . . . . 14 𝑘𝑍
48 nfcv 2764 . . . . . . . . . . . . . 14 𝑗𝑍
49 nfcv 2764 . . . . . . . . . . . . . 14 𝑗{𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
50 nfcv 2764 . . . . . . . . . . . . . 14 𝑘{𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))}
5118breq1d 4663 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))))
5251cbvrabv 3199 . . . . . . . . . . . . . . . . . 18 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))}
5352a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))})
54 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗))
5554oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝑗)))
5655breq2d 4665 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))))
5756rabbidv 3189 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5853, 57eqtrd 2656 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))})
5958eqeq1d 2624 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))))
6059rabbidv 3189 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6147, 48, 49, 50, 60cbvmpt22 39277 . . . . . . . . . . . . 13 (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
6246, 61eqtri 2644 . . . . . . . . . . . 12 𝑃 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑧 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑧) < (𝐴 + (1 / 𝑗))} = (𝑠 ∩ dom (𝐹𝑚))})
63 smflimlem4.9 . . . . . . . . . . . . 13 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
64 nfcv 2764 . . . . . . . . . . . . . 14 𝑗(𝐶‘(𝑚𝑃𝑘))
65 nfcv 2764 . . . . . . . . . . . . . 14 𝑘(𝐶‘(𝑚𝑃𝑗))
66 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑚𝑃𝑘) = (𝑚𝑃𝑗))
6766fveq2d 6195 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑚𝑃𝑗)))
6847, 48, 64, 65, 67cbvmpt22 39277 . . . . . . . . . . . . 13 (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
6963, 68eqtri 2644 . . . . . . . . . . . 12 𝐻 = (𝑚𝑍, 𝑗 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑗)))
70 smflimlem4.10 . . . . . . . . . . . . 13 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
71 simpll 790 . . . . . . . . . . . . . . . . 17 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 = 𝑗)
7271oveq2d 6666 . . . . . . . . . . . . . . . 16 (((𝑘 = 𝑗𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚𝐻𝑘) = (𝑚𝐻𝑗))
7372iineq2dv 4543 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑗𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7473iuneq2dv 4542 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗))
7574cbviinv 4560 . . . . . . . . . . . . 13 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
7670, 75eqtri 2644 . . . . . . . . . . . 12 𝐼 = 𝑗 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑗)
77 smflimlem4.11 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7877adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
7978ad5ant15 1303 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) ∧ 𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
80 simp-4r 807 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑥 ∈ (𝐷𝐼))
81 simplr 792 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → 𝑘 ∈ ℕ)
8237ad3antlr 767 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (𝑦 / 2) ∈ ℝ+)
83 simpr 477 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → (1 / 𝑘) < (𝑦 / 2))
849, 41, 43, 22, 45, 62, 69, 76, 79, 80, 81, 82, 83smflimlem3 40981 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) ∧ (1 / 𝑘) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
8584exp31 630 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑘 ∈ ℕ → ((1 / 𝑘) < (𝑦 / 2) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))))
8685rexlimdv 3030 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝑦 / 2) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)))))
8740, 86mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))))
88 nfv 1843 . . . . . . . . . 10 𝑖((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+)
89 nfcv 2764 . . . . . . . . . 10 𝑖𝐹
90 nfcv 2764 . . . . . . . . . 10 𝑥𝐹
91 smflimlem4.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
9291ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
93 eleq1 2689 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚𝑍𝑖𝑍))
9493anbi2d 740 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝜑𝑚𝑍) ↔ (𝜑𝑖𝑍)))
95 fveq2 6191 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
9695dmeqd 5326 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖))
9795, 96feq12d 6033 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑖):dom (𝐹𝑖)⟶ℝ))
9894, 97imbi12d 334 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)))
9998, 15chvarv 2263 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
10099ad4ant14 1293 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
101 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
102101dmeqd 5326 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑙 → dom (𝐹𝑚) = dom (𝐹𝑙))
103102cbviinv 4560 . . . . . . . . . . . . . . 15 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
104103a1i 11 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙))
105104iuneq2i 4539 . . . . . . . . . . . . 13 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙)
106 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (ℤ𝑛) = (ℤ𝑚))
107106iineq1d 39267 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙))
108 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
109108dmeqd 5326 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑖 → dom (𝐹𝑙) = dom (𝐹𝑖))
110109cbviinv 4560 . . . . . . . . . . . . . . . 16 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
111110a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑚)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
112107, 111eqtrd 2656 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
113112cbviunv 4559 . . . . . . . . . . . . 13 𝑛𝑍 𝑙 ∈ (ℤ𝑛)dom (𝐹𝑙) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
114105, 113eqtri 2644 . . . . . . . . . . . 12 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
115114rabeqi 3193 . . . . . . . . . . 11 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
116 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
117116fveq1d 6193 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥))
118117cbvmptv 4750 . . . . . . . . . . . . . . 15 (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
119118eqcomi 2631 . . . . . . . . . . . . . 14 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))
120119eleq1i 2692 . . . . . . . . . . . . 13 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ )
121120a1i 11 . . . . . . . . . . . 12 (𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ ))
122121rabbiia 3185 . . . . . . . . . . 11 {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
12317, 115, 1223eqtri 2648 . . . . . . . . . 10 𝐷 = {𝑥 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ∣ (𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)) ∈ dom ⇝ }
124119fveq2i 6194 . . . . . . . . . . . 12 ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥)))
125124mpteq2i 4741 . . . . . . . . . . 11 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1264, 125eqtri 2644 . . . . . . . . . 10 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑖𝑍 ↦ ((𝐹𝑖)‘𝑥))))
1273adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → 𝑥𝐷)
12837adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
12988, 89, 90, 92, 9, 100, 123, 126, 127, 128fnlimabslt 39911 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)))
13029adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
131 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
132130, 131resubcld 10458 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
133132adantrr 753 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℝ)
134132recnd 10068 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ∈ ℂ)
135134abscld 14175 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
136135adantrr 753 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) ∈ ℝ)
13732rehalfcld 11279 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
138137ad2antlr 763 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝑦 / 2) ∈ ℝ)
139133leabsd 14153 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) ≤ (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))))
14028recnd 10068 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ∈ ℂ)
141140adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
142 recn 10026 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹𝑖)‘𝑥) ∈ ℝ → ((𝐹𝑖)‘𝑥) ∈ ℂ)
143142adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → ((𝐹𝑖)‘𝑥) ∈ ℂ)
144141, 143abssubd 14192 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ ((𝐹𝑖)‘𝑥) ∈ ℝ) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
145144adantrr 753 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) = (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))))
146 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))
147145, 146eqbrtrd 4675 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
148147adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (abs‘((𝐺𝑥) − ((𝐹𝑖)‘𝑥))) < (𝑦 / 2))
149133, 136, 138, 139, 148lelttrd 10195 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2))
15029adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) ∈ ℝ)
151 simprl 794 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → ((𝐹𝑖)‘𝑥) ∈ ℝ)
152150, 151, 138ltsubadd2d 10625 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (((𝐺𝑥) − ((𝐹𝑖)‘𝑥)) < (𝑦 / 2) ↔ (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
153149, 152mpbid 222 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ (((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2))) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
154153ex 450 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
155154ad2antrr 762 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → (𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
156155ralimdva 2962 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
157156ex 450 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑚𝑍 → (∀𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∀𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))))
15836, 157reximdai 3012 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(((𝐹𝑖)‘𝑥) ∈ ℝ ∧ (abs‘(((𝐹𝑖)‘𝑥) − (𝐺𝑥))) < (𝑦 / 2)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2))))
159129, 158mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)))
160116dmeqd 5326 . . . . . . . . . 10 (𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚))
161160eleq2d 2687 . . . . . . . . 9 (𝑖 = 𝑚 → (𝑥 ∈ dom (𝐹𝑖) ↔ 𝑥 ∈ dom (𝐹𝑚)))
162117breq1d 4663 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2)) ↔ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
163161, 162anbi12d 747 . . . . . . . 8 (𝑖 = 𝑚 → ((𝑥 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑥) < (𝐴 + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))))
164117oveq1d 6665 . . . . . . . . 9 (𝑖 = 𝑚 → (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) = (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
165164breq2d 4665 . . . . . . . 8 (𝑖 = 𝑚 → ((𝐺𝑥) < (((𝐹𝑖)‘𝑥) + (𝑦 / 2)) ↔ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
16636, 9, 87, 159, 163, 165rexanuz3 39275 . . . . . . 7 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
167 df-3an 1039 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))))
168 3ancomb 1047 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
169167, 168bitr3i 266 . . . . . . . 8 (((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
170169rexbii 3041 . . . . . . 7 (∃𝑚𝑍 ((𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2))) ↔ ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
171166, 170sylib 208 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → ∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))))
17229ad2antrr 762 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) ∈ ℝ)
173153adant3 1081 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
174 simp3 1063 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
175173, 174ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
176175ad4ant134 1296 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
177 simpllr 799 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → 𝑦 ∈ ℝ+)
178177, 137syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (𝑦 / 2) ∈ ℝ)
179176, 178readdcld 10069 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
180179adantlllr 39199 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ 𝑥 ∈ dom (𝐹𝑚)) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
1811803ad2antr1 1226 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∈ ℝ)
182 rehalfcl 11258 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝑦 / 2) ∈ ℝ)
18333, 182syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
18431, 183jca 554 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ))
185 readdcl 10019 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
186184, 185syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
187186, 183readdcld 10069 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
188187ad5ant13 1301 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) ∈ ℝ)
189 simpr2 1068 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)))
190176adantrr 753 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
191186ad2antrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐴 + (𝑦 / 2)) ∈ ℝ)
192178adantrr 753 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝑦 / 2) ∈ ℝ)
193 simprr 796 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))
194190, 191, 192, 193ltadd1dd 10638 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
195194adantlllr 39199 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
1961953adantr2 1221 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
197172, 181, 188, 189, 196lttrd 10198 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)))
19831recnd 10068 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ∈ ℂ)
199183recnd 10068 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
200198, 199, 199addassd 10062 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + ((𝑦 / 2) + (𝑦 / 2))))
20132recnd 10068 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
202 2halves 11260 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
203201, 202syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
204203oveq2d 6666 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
205204adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → (𝐴 + ((𝑦 / 2) + (𝑦 / 2))) = (𝐴 + 𝑦))
206200, 205eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ+) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
207206ad5ant13 1301 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → ((𝐴 + (𝑦 / 2)) + (𝑦 / 2)) = (𝐴 + 𝑦))
208197, 207breqtrd 4679 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑚𝑍) ∧ (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2)))) → (𝐺𝑥) < (𝐴 + 𝑦))
209208exp31 630 . . . . . . 7 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝑚𝑍 → ((𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) → (𝐺𝑥) < (𝐴 + 𝑦))))
210209rexlimdv 3030 . . . . . 6 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (∃𝑚𝑍 (𝑥 ∈ dom (𝐹𝑚) ∧ (𝐺𝑥) < (((𝐹𝑚)‘𝑥) + (𝑦 / 2)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (𝑦 / 2))) → (𝐺𝑥) < (𝐴 + 𝑦)))
211171, 210mpd 15 . . . . 5 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) < (𝐴 + 𝑦))
21229, 35, 211ltled 10185 . . . 4 (((𝜑𝑥 ∈ (𝐷𝐼)) ∧ 𝑦 ∈ ℝ+) → (𝐺𝑥) ≤ (𝐴 + 𝑦))
213212ralrimiva 2966 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦))
214 alrple 12037 . . . 4 (((𝐺𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
21528, 44, 214syl2anc 693 . . 3 ((𝜑𝑥 ∈ (𝐷𝐼)) → ((𝐺𝑥) ≤ 𝐴 ↔ ∀𝑦 ∈ ℝ+ (𝐺𝑥) ≤ (𝐴 + 𝑦)))
216213, 215mpbird 247 . 2 ((𝜑𝑥 ∈ (𝐷𝐼)) → (𝐺𝑥) ≤ 𝐴)
2172, 216ssrabdv 3681 1 (𝜑 → (𝐷𝐼) ⊆ {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574   ciun 4520   ciin 4521   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  cz 11377  cuz 11687  +crp 11832  abscabs 13974  cli 14215  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-smblfn 40910
This theorem is referenced by:  smflimlem5  40983
  Copyright terms: Public domain W3C validator