Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbviunf Structured version   Visualization version   GIF version

Theorem cbviunf 29372
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
Hypotheses
Ref Expression
cbviunf.x 𝑥𝐴
cbviunf.y 𝑦𝐴
cbviunf.1 𝑦𝐵
cbviunf.2 𝑥𝐶
cbviunf.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviunf 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbviunf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviunf.x . . . 4 𝑥𝐴
2 cbviunf.y . . . 4 𝑦𝐴
3 cbviunf.1 . . . . 5 𝑦𝐵
43nfcri 2758 . . . 4 𝑦 𝑧𝐵
5 cbviunf.2 . . . . 5 𝑥𝐶
65nfcri 2758 . . . 4 𝑥 𝑧𝐶
7 cbviunf.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
87eleq2d 2687 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
91, 2, 4, 6, 8cbvrexf 3166 . . 3 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐴 𝑧𝐶)
109abbii 2739 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
11 df-iun 4522 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
12 df-iun 4522 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
1310, 11, 123eqtr4i 2654 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {cab 2608  wnfc 2751  wrex 2913   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-iun 4522
This theorem is referenced by:  aciunf1lem  29462
  Copyright terms: Public domain W3C validator