Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwunicl Structured version   Visualization version   GIF version

Theorem elpwunicl 29371
Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypotheses
Ref Expression
elpwunicl.1 (𝜑𝐵𝑉)
elpwunicl.2 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
Assertion
Ref Expression
elpwunicl (𝜑 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwunicl
StepHypRef Expression
1 elpwunicl.2 . . . 4 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
2 elpwg 4166 . . . . 5 (𝐴 ∈ 𝒫 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝒫 𝐵𝐴 ⊆ 𝒫 𝐵))
31, 2syl 17 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝒫 𝐵𝐴 ⊆ 𝒫 𝐵))
41, 3mpbid 222 . . 3 (𝜑𝐴 ⊆ 𝒫 𝐵)
5 pwuniss 29370 . . 3 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
64, 5syl 17 . 2 (𝜑 𝐴𝐵)
7 uniexg 6955 . . 3 (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ V)
8 elpwg 4166 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
91, 7, 83syl 18 . 2 (𝜑 → ( 𝐴 ∈ 𝒫 𝐵 𝐴𝐵))
106, 9mpbird 247 1 (𝜑 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1990  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by:  ldgenpisyslem1  30226
  Copyright terms: Public domain W3C validator