Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sdnN Structured version   Visualization version   GIF version

Theorem cdleme31sdnN 35675
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme31sdn.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sdn.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme31sdn.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
Assertion
Ref Expression
cdleme31sdnN 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝑠 / 𝑡𝐷)
Distinct variable groups:   𝑡,   𝑡,   𝑡,𝑃   𝑡,𝑄   𝑡,𝑈   𝑡,𝑊   𝑡,𝑠
Allowed substitution hints:   𝐶(𝑡,𝑠)   𝐷(𝑡,𝑠)   𝑃(𝑠)   𝑄(𝑠)   𝑈(𝑠)   𝐼(𝑡,𝑠)   (𝑠)   (𝑡,𝑠)   (𝑠)   𝑁(𝑡,𝑠)   𝑊(𝑠)

Proof of Theorem cdleme31sdnN
StepHypRef Expression
1 cdleme31sdn.n . 2 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
2 biid 251 . . 3 (𝑠 (𝑃 𝑄) ↔ 𝑠 (𝑃 𝑄))
3 vex 3203 . . . 4 𝑠 ∈ V
4 cdleme31sdn.d . . . . 5 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
5 cdleme31sdn.c . . . . 5 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
64, 5cdleme31sc 35672 . . . 4 (𝑠 ∈ V → 𝑠 / 𝑡𝐷 = 𝐶)
73, 6ax-mp 5 . . 3 𝑠 / 𝑡𝐷 = 𝐶
82, 7ifbieq2i 4110 . 2 if(𝑠 (𝑃 𝑄), 𝐼, 𝑠 / 𝑡𝐷) = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
91, 8eqtr4i 2647 1 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝑠 / 𝑡𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  ifcif 4086   class class class wbr 4653  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator