Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31snd Structured version   Visualization version   GIF version

Theorem cdleme31snd 35674
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Apr-2013.)
Hypotheses
Ref Expression
cdleme31snd.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme31snd.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdleme31snd.e 𝐸 = ((𝑂 𝑈) (𝑄 ((𝑃 𝑂) 𝑊)))
cdleme31snd.o 𝑂 = ((𝑆 𝑉) (𝑃 ((𝑄 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme31snd (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝐸)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐷   𝑣,𝑡,   𝑡, ,𝑣   𝑡,𝑂   𝑡,𝑃,𝑣   𝑡,𝑄,𝑣   𝑣,𝑆   𝑡,𝑈,𝑣   𝑣,𝑉   𝑡,𝑊,𝑣
Allowed substitution hints:   𝐴(𝑡)   𝐷(𝑡)   𝑆(𝑡)   𝐸(𝑣,𝑡)   𝑁(𝑣,𝑡)   𝑂(𝑣)   𝑉(𝑡)

Proof of Theorem cdleme31snd
StepHypRef Expression
1 csbnestg 3998 . 2 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝑆 / 𝑣𝑁 / 𝑡𝐷)
2 cdleme31snd.n . . . . 5 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
3 cdleme31snd.o . . . . 5 𝑂 = ((𝑆 𝑉) (𝑃 ((𝑄 𝑆) 𝑊)))
42, 3cdleme31sc 35672 . . . 4 (𝑆𝐴𝑆 / 𝑣𝑁 = 𝑂)
54csbeq1d 3540 . . 3 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝑂 / 𝑡𝐷)
63ovexi 6679 . . . 4 𝑂 ∈ V
7 cdleme31snd.d . . . . 5 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
8 cdleme31snd.e . . . . 5 𝐸 = ((𝑂 𝑈) (𝑄 ((𝑃 𝑂) 𝑊)))
97, 8cdleme31sc 35672 . . . 4 (𝑂 ∈ V → 𝑂 / 𝑡𝐷 = 𝐸)
106, 9ax-mp 5 . . 3 𝑂 / 𝑡𝐷 = 𝐸
115, 10syl6eq 2672 . 2 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝐸)
121, 11eqtrd 2656 1 (𝑆𝐴𝑆 / 𝑣𝑁 / 𝑡𝐷 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  cdlemeg46ngfr  35806
  Copyright terms: Public domain W3C validator