![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clelsb3f | Structured version Visualization version GIF version |
Description: Substitution applied to an atomic wff (class version of elsb3 2434). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
Ref | Expression |
---|---|
clelsb3f.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
clelsb3f | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelsb3f.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2758 | . . 3 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
3 | 2 | sbco2 2415 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝐴) |
4 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
5 | eleq1 2689 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
6 | 4, 5 | sbie 2408 | . . 3 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
7 | 6 | sbbii 1887 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝐴) |
8 | nfv 1843 | . . 3 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
9 | eleq1 2689 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
10 | 8, 9 | sbie 2408 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
11 | 3, 7, 10 | 3bitr3i 290 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 [wsb 1880 ∈ wcel 1990 Ⅎwnfc 2751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
This theorem is referenced by: rmo3f 29335 suppss2f 29439 fmptdF 29456 disjdsct 29480 esumpfinvalf 30138 |
Copyright terms: Public domain | W3C validator |