| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelsb3f | Structured version Visualization version Unicode version | ||
| Description: Substitution applied to an atomic wff (class version of elsb3 2434). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
| Ref | Expression |
|---|---|
| clelsb3f.1 |
|
| Ref | Expression |
|---|---|
| clelsb3f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb3f.1 |
. . . 4
| |
| 2 | 1 | nfcri 2758 |
. . 3
|
| 3 | 2 | sbco2 2415 |
. 2
|
| 4 | nfv 1843 |
. . . 4
| |
| 5 | eleq1 2689 |
. . . 4
| |
| 6 | 4, 5 | sbie 2408 |
. . 3
|
| 7 | 6 | sbbii 1887 |
. 2
|
| 8 | nfv 1843 |
. . 3
| |
| 9 | eleq1 2689 |
. . 3
| |
| 10 | 8, 9 | sbie 2408 |
. 2
|
| 11 | 3, 7, 10 | 3bitr3i 290 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: rmo3f 29335 suppss2f 29439 fmptdF 29456 disjdsct 29480 esumpfinvalf 30138 |
| Copyright terms: Public domain | W3C validator |