MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsslem Structured version   Visualization version   GIF version

Theorem clsslem 13723
Description: The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020.)
Assertion
Ref Expression
clsslem (𝑅𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} ⊆ {𝑟 ∣ (𝑆𝑟𝜑)})
Distinct variable groups:   𝑅,𝑟   𝑆,𝑟
Allowed substitution hint:   𝜑(𝑟)

Proof of Theorem clsslem
StepHypRef Expression
1 sstr2 3610 . . . 4 (𝑅𝑆 → (𝑆𝑟𝑅𝑟))
21anim1d 588 . . 3 (𝑅𝑆 → ((𝑆𝑟𝜑) → (𝑅𝑟𝜑)))
32ss2abdv 3675 . 2 (𝑅𝑆 → {𝑟 ∣ (𝑆𝑟𝜑)} ⊆ {𝑟 ∣ (𝑅𝑟𝜑)})
4 intss 4498 . 2 ({𝑟 ∣ (𝑆𝑟𝜑)} ⊆ {𝑟 ∣ (𝑅𝑟𝜑)} → {𝑟 ∣ (𝑅𝑟𝜑)} ⊆ {𝑟 ∣ (𝑆𝑟𝜑)})
53, 4syl 17 1 (𝑅𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} ⊆ {𝑟 ∣ (𝑆𝑟𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  {cab 2608  wss 3574   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-in 3581  df-ss 3588  df-int 4476
This theorem is referenced by:  trclsslem  13729
  Copyright terms: Public domain W3C validator