![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) |
Ref | Expression |
---|---|
ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimiv 1855 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | ss2ab 3670 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒} ↔ ∀𝑥(𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 224 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 {cab 2608 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-in 3581 df-ss 3588 |
This theorem is referenced by: intss 4498 ssopab2 5001 ssoprab2 6711 suppimacnvss 7305 suppimacnv 7306 ressuppss 7314 ss2ixp 7921 fiss 8330 tcss 8620 tcel 8621 infmap2 9040 cfub 9071 cflm 9072 cflecard 9075 clsslem 13723 cncmet 23119 plyss 23955 ofrn2 29442 sigaclci 30195 subfacp1lem6 31167 ss2mcls 31465 itg2addnclem 33461 sdclem1 33539 istotbnd3 33570 sstotbnd 33574 qsss1 34053 aomclem4 37627 hbtlem4 37696 hbtlem3 37697 rngunsnply 37743 iocinico 37797 |
Copyright terms: Public domain | W3C validator |